scholarly journals Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section: A pilot randomised placebo-controlled trial

EBioMedicine ◽  
2021 ◽  
Vol 69 ◽  
pp. 103443
Author(s):  
Brooke C. Wilson ◽  
Éadaoin M. Butler ◽  
Celia P. Grigg ◽  
José G.B. Derraik ◽  
Valentina Chiavaroli ◽  
...  
2021 ◽  
Vol 6 ◽  
pp. 157
Author(s):  
Monica Arribas ◽  
Ian Roberts ◽  
Rizwana Chaudhri ◽  
Amber Geer ◽  
Danielle Prowse ◽  
...  

Background: Intravenous tranexamic acid (TXA) within 3 hours of birth significantly reduces death due to bleeding in women with postpartum haemorrhage (PPH). Most PPH deaths occur in the first hours after giving birth and treatment delay decreases survival.  One barrier to rapid TXA treatment is the need for intravenous injection. Intramuscular injection and oral solution of TXA would be easier and faster to administer and would require less training. However, the pharmacokinetics (PK), pharmacodynamics and safety of TXA administered by different routes in pregnant women have not been established. The main aim of this study is to ascertain whether IM and oral solution of TXA will be absorbed at levels sufficient to inhibit fibrinolysis in pregnant women. Methods: WOMAN-PharmacoTXA is a prospective, randomised, open label trial to be conducted in Zambia and Pakistan.  Adult women undergoing caesarean section with at least one risk factor for PPH will be included.  Women will be randomised to receive one of the following about 1 hour prior to caesarean section: 1-gram TXA IV, 1-gram TXA IM, 4-grams TXA oral solution or no TXA. Randomisation will continue until 120 participants with at least six post randomisation PK samples are included. TXA concentration in maternal blood samples will be measured at baseline and at different time points during 24 hours after receipt of intervention. Blood TXA concentration will be measured from the umbilical cord and neonate. The primary endpoint is maternal blood TXA concentrations over time. Secondary outcomes include umbilical cord and neonate TXA concentration D-dimer concentration, blood loss and clinical diagnosis of PPH, injection site reactions and maternal and neonate adverse events. Discussion: The WOMAN-PharmacoTXA trial will provide important data on pharmacokinetics, pharmacodynamics and safety of TXA after IV, intramuscular and oral administration in women giving birth by caesarean section. Trial registration: ClincalTrials.gov, NCT04274335 (18/02/2020).


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Qiang Feng ◽  
Suisha Liang ◽  
Huijue Jia ◽  
Andreas Stadlmayr ◽  
Longqing Tang ◽  
...  

Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1951113
Author(s):  
Yan Hui ◽  
Birgitte Smith ◽  
Martin Steen Mortensen ◽  
Lukasz Krych ◽  
Søren J. Sørensen ◽  
...  

BMJ ◽  
2021 ◽  
pp. n716
Author(s):  
Sidsel Boie ◽  
Julie Glavind ◽  
Niels Uldbjerg ◽  
Philip J Steer ◽  
Pinar Bor

Abstract Objective To determine whether discontinuing oxytocin stimulation in the active phase of induced labour is associated with lower caesarean section rates. Design International multicentre, double blind, randomised controlled trial. Setting Nine hospitals in Denmark and one in the Netherlands between 8 April 2016 and 30 June 2020. Participants 1200 women stimulated with intravenous oxytocin infusion during the latent phase of induced labour. Intervention Women were randomly assigned to have their oxytocin stimulation discontinued or continued in the active phase of labour. Main outcome measure Delivery by caesarean section. Results A total of 607 women were assigned to discontinuation and 593 to continuation of the oxytocin infusion. The rates of caesarean section were 16.6% (n=101) in the discontinued group and 14.2% (n=84) in the continued group (relative risk 1.17, 95% confidence interval 0.90 to 1.53). In 94 parous women with no previous caesarean section, the caesarean section rate was 7.5% (11/147) in the discontinued group and 0.6% (1/155) in the continued group (relative risk 11.6, 1.15 to 88.7). Discontinuation was associated with longer duration of labour (median from randomisation to delivery 282 v 201 min; P<0.001), a reduced risk of hyperstimulation (20/546 (3.7%) v 70/541 (12.9%); P<0.001), and a reduced risk of fetal heart rate abnormalities (153/548 (27.9%) v 219/537 (40.8%); P<0.001) but rates of other adverse maternal and neonatal outcomes were similar between groups. Conclusions In a setting where monitoring of the fetal condition and the uterine contractions can be guaranteed, routine discontinuation of oxytocin stimulation may lead to a small increase in caesarean section rate but a significantly reduced risk of uterine hyperstimulation and abnormal fetal heart rate patterns. Trial registration ClinicalTrials.gov NCT02553226 .


Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582098794
Author(s):  
Imran Mukhtar ◽  
Haseeb Anwar ◽  
Osman Asghar Mirza ◽  
Qasim Ali ◽  
Muhammad Umar Ijaz ◽  
...  

In the contemporary research world, the intestinal microbiome is now envisioned as a new body organ. Recently, the gut microbiome represents a new drug target in the gut, since various orthologues of intestinal drug transporters are also found present in the microbiome that lines the small intestine of the host. Owing to this, absorbance of sulpiride by the gut microbiome in an in vivo albino rats model was assessed after the oral administration with a single dose of 20mg/kg b.w. The rats were subsequently sacrificed at 2, 3, 4, 5 and 6 hours post oral administration to collect the gut microbial mass pellet. The drug absorbance by the gut microbiome was determined by pursuing the microbial lysate through RP-HPLC-UV. Total absorbance of sulpiride by the whole gut microbiome and drug absorbance per milligram of microbial pellet were found significantly higher at 4 hours post-administration as compared to all other groups. These results affirm the hypothesis that the structural homology between membrane transporters of the gut microbiome and intestinal epithelium of the host might play an important role in drug absorbance by gut microbes in an in vivo condition.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Edward C. Deehan ◽  
Eloisa Colin-Ramirez ◽  
Lucila Triador ◽  
Karen L. Madsen ◽  
Carla M. Prado ◽  
...  

Abstract Background Accumulating evidence suggests that the metabolic effects of metformin and fermentable fibers are mediated, in part, through diverging or overlapping effects on the composition and metabolic functions of the gut microbiome. Pre-clinical animal models have established that the addition of fiber to metformin monotherapy improves glucose tolerance. However, possible synergistic effects of combination therapy (metformin plus fiber) have not been investigated in humans. Moreover, the underlying mechanisms of synergy have yet to be elucidated. The aim of this study is to compare in adolescents with obesity the metabolic effects of metformin and fermentable fibers in combination with those of metformin or fiber alone. We will also determine if therapeutic responses correlate with compositional and functional features of the gut microbiome. Methods This is a parallel three-armed, double-blinded, randomized controlled trial. Adolescents (aged 12–18 years) with obesity, insulin resistance (IR), and a family history of type 2 diabetes mellitus (T2DM) will receive either metformin (850 mg p.o. twice/day), fermentable fibers (35 g/day), or a combination of metformin plus fiber for 12 months. Participants will be seen at baseline, 3, 6, and 12 months, with a phone follow-up at 1 and 9 months. Primary and secondary outcomes will be assessed at baseline, 6, and 12 months. The primary outcome is change in IR estimated by homeostatic model assessment of IR; key secondary outcomes include changes in the Matsuda index, oral disposition index, body mass index z-score, and fat mass to fat-free mass ratio. To gain mechanistic insight, endpoints that reflect host-microbiota interactions will also be assessed: obesity-related immune, metabolic, and satiety markers; humoral metabolites; and fecal microbiota composition, short-chain fatty acids, and bile acids. Discussion This study will compare the potential metabolic benefits of fiber with those of metformin in adolescents with obesity, determine if metformin and fiber act synergistically to improve IR, and elucidate whether the metabolic benefits of metformin and fiber associate with changes in fecal microbiota composition and the output of health-related metabolites. This study will provide insight into the potential role of the gut microbiome as a target for enhancing the therapeutic efficacy of emerging treatments for T2DM prevention. Trial registration ClinicalTrials.gov NCT04578652. Registered on 8 October 2020.


Sign in / Sign up

Export Citation Format

Share Document