scholarly journals Novel Aspects of Brown Adipose Tissue Biology

2013 ◽  
Vol 42 (1) ◽  
pp. 89-107 ◽  
Author(s):  
Joerg Heeren ◽  
Heike Münzberg
2014 ◽  
Vol 59 (31) ◽  
pp. 4030-4040 ◽  
Author(s):  
Yanyan Shen ◽  
Xiaomeng Liu ◽  
Meng Dong ◽  
Jun Lin ◽  
Qianwei Zhao ◽  
...  

Author(s):  
Rafael Calais Gaspar ◽  
José R Pauli ◽  
Gerald I Shulman ◽  
Vitor Rosetto Muñoz

Brown adipose tissue (BAT) has been encouraged as a potential treatment for obesity and comorbidities due to its thermogenic activity capacity and contribution to energy expenditure. Some interventions such as cold and β-adrenergic drugs are able to activate BAT thermogenesis as well as promote differentiation of white adipocytes into brown-like cells (browning), enhancing the thermogenic activity of these cells. In this mini-review we discuss new mechanisms related to BAT and energy expenditure. In this regard, we will also discuss recent studies that have revealed the existence of important secretory molecules from BAT "batokines" that act in autocrine, paracrine, and endocrine mechanisms, which in turn may explain some of the beneficial roles of BAT on whole-body glucose and fat metabolism. Finally, we will discuss new insights related to BAT thermogenesis with an additional focus on the distinct features of BAT metabolism between rodents and humans.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


2011 ◽  
Vol 6 (S 01) ◽  
Author(s):  
M Merkel ◽  
A Bartelt ◽  
K Brügelmann ◽  
J Heeren

2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
K Krause ◽  
M Kranz ◽  
V Zeisig ◽  
N Klöting ◽  
K Steinhoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document