The toxic effect of triclosan and methyl-triclosan on biological pathways revealed by metabolomics and gene expression in zebrafish embryos

2020 ◽  
Vol 189 ◽  
pp. 110039 ◽  
Author(s):  
Jing Fu ◽  
Yue Xuan Rochelle Tan ◽  
Zhiyuan Gong ◽  
Sungwoo Bae
Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 665
Author(s):  
Hui Yu ◽  
Yan Guo ◽  
Jingchun Chen ◽  
Xiangning Chen ◽  
Peilin Jia ◽  
...  

Transcriptomic studies of mental disorders using the human brain tissues have been limited, and gene expression signatures in schizophrenia (SCZ) remain elusive. In this study, we applied three differential co-expression methods to analyze five transcriptomic datasets (three RNA-Seq and two microarray datasets) derived from SCZ and matched normal postmortem brain samples. We aimed to uncover biological pathways where internal correlation structure was rewired or inter-coordination was disrupted in SCZ. In total, we identified 60 rewired pathways, many of which were related to neurotransmitter, synapse, immune, and cell adhesion. We found the hub genes, which were on the center of rewired pathways, were highly mutually consistent among the five datasets. The combinatory list of 92 hub genes was generally multi-functional, suggesting their complex and dynamic roles in SCZ pathophysiology. In our constructed pathway crosstalk network, we found “Clostridium neurotoxicity” and “signaling events mediated by focal adhesion kinase” had the highest interactions. We further identified disconnected gene links underlying the disrupted pathway crosstalk. Among them, four gene pairs (PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A, and GRIA1:MAP2K4) were normally correlated in universal contexts. In summary, we systematically identified rewired pathways, disrupted pathway crosstalk circuits, and critical genes and gene links in schizophrenia transcriptomes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8276 ◽  
Author(s):  
Yichong Zhang ◽  
Yuanbo Zhan ◽  
Yuhui Kou ◽  
Xiaofeng Yin ◽  
Yanhua Wang ◽  
...  

Background Neurogenic heterotopic ossification is a disorder of aberrant bone formation affecting one in five patients sustaining a spinal cord injury or traumatic brain injury (SCI-TBI-HO). However, the underlying mechanisms of SCI-TBI-HO have proven difficult to elucidate. The aim of the present study is to identify the most promising candidate genes and biological pathways for SCI-TBI-HO. Methods In this study, we used text mining to generate potential explanations for SCI-TBI-HO. Moreover, we employed several additional datasets, including gene expression profile data, drug data and tissue-specific gene expression data, to explore promising genes that associated with SCI-TBI-HO. Results We identified four SCI-TBI-HO-associated genes, including GDF15, LDLR, CCL2, and CLU. Finally, using enrichment analysis, we identified several pathways, including integrin signaling, insulin pathway, internalization of ErbB1, urokinase-type plasminogen activator and uPAR-mediated signaling, PDGFR-beta signaling pathway, EGF receptor (ErbB1) signaling pathway, and class I PI3K signaling events, which may be associated with SCI-TBI-HO. Conclusions These results enhance our understanding of the molecular mechanisms of SCI-TBI-HO and offer new leads for researchers and innovative therapeutic strategies.


2021 ◽  
Author(s):  
Jing Du ◽  
Shu-Kai Li ◽  
Liu-Yuan Guan ◽  
Zheng Guo ◽  
Jiang-Fan Yin ◽  
...  

AbstractThe left-right symmetry breaking of vertebrate embryos requires fluid flow (called nodal flow in zebrafish). However, the molecular mechanisms that mediate the asymmetric gene expression regulation under nodal flow remain elusive. In this paper, we report that heat shock factor 1 (HSF1) is asymmetrically activated in the Kuppfer’s vesicle at the early stage of zebrafish embryos in the presence of nodal flow. Deficiency in HSF1 expression caused a significant situs inversus and disrupted gene expression asymmetry of nodal signaling proteins in zebrafish embryos. Further studies demonstrated that HSF1 could be immediately activated by fluid shear stress. The mechanical sensation ability of HSF1 is conserved in a variety of mechanical stimuli in different cell types. Moreover, cilia and the Ca2+-Akt signaling axis are essential for the activation of HSF1 under mechanical stress in vitro and in vivo. Considering the conserved expression of HSF1 in organisms, these findings unveil a fundamental mechanism of gene expression regulation triggered by mechanical clues during embryonic development and other physiological and pathological transformations.


Author(s):  
Meijiang Gao ◽  
Marina Veil ◽  
Marcus Rosenblatt ◽  
Anna Gebhard ◽  
Helge Hass ◽  
...  

AbstractAwakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyzed nucleosome positioning, H3K27 acetylation, transcription, and gastrulation rates in zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that the bulk transcriptional onset does not require Sox19b and Pou5f3, but is sensitive to their balance. Pou5f3 docks H3K27ac on the enhancers of genes involved in gastrulation and ventral fate specification. Sox19b facilitates Pou5f3 access to one-third of these enhancers. The genes regulating mesendodermal and dorsal fates are primed for activation independently on Pou5f3 and Sox19b. Strikingly, the loss of either factor results in activation of silent enhancers; simultaneous loss of both leads to premature expression of differentiation genes. Our results uncover how independent activities of maternal Pou5f3 and Sox19b add up or antagonize to determine the early gene expression repertoire.


2003 ◽  
Vol 13 (2) ◽  
pp. 97-106 ◽  
Author(s):  
Christopher Ton ◽  
Dimitri Stamatiou ◽  
Choong-Chin Liew

Understanding how vertebrates respond to hypoxia can have important clinical implications. Fish have evolved the ability to survive long exposure to low oxygen levels. However, little is known about the specific changes in gene expression that result from hypoxia. In this study we used a zebrafish cDNA microarray to examine the expression of >4,500 genes in zebrafish embryos exposed to 24 h of hypoxia during development. We tested the hypotheses that hypoxia changes gene expression profile of the zebrafish embryos and that these changes can be reverted by reexposure to a normoxic (20.8% O2) environment. Our data were consistent with both of these hypotheses: indicating that zebrafish embryos undergo adaptive changes in gene expression in response to hypoxia. Our study provides a striking genetic portrait of the zebrafish embryos’ adaptive responses to hypoxic stress and demonstrates the utility of the microarray technology as a tool for analyzing complex developmental processes in the zebrafish.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Valeriy Poroyko ◽  
Susan McCormick ◽  
Qi He ◽  
Christopher L Skelly

Ischemic stroke is a complex disease process with carotid atherosclerosis as the major etiologic source. To better understand the biology of a vulnerable plaque we carried out whole transcriptome shotgun sequencing of human carotid plaques. Methods 5 carotid atherosclerotic plaques were obtained at the time of operation (2 symptomatic, 2 asymptomatic, and 1 control). RNA was isolated and 5 cDNA libraries were constructed and sequenced with single-reads100nt in length using one line of flow cell of HySeq 2000 (Illumina Inc). Standard bioinformatic techniques were used to ensure quality screening of raw reads. Ingenuity Systems IPA software was used to determine canonical biological pathways overrepresented in plaques. We compared our data to the data of Illumina Human Body Map processed by a similar analytical pipeline. Linkage analysis was performed. Results Among detected pathways were “Atherosclerosis Signaling” and pathways involved in inflammation and cell differentiation. We analyzed gene expression data by creating a distance matrix based on Jaccard similarity measure (Fig 1). When gene expression values were used to create a matrix of Euclidian distances between known transcriptomes, four specimens including the control clustered with heart and muscle. The transcriptome from the stroke patient was more similar to lung, liver and heart. Conclusion Whole transcriptome analysis of carotid plaques is feasible and ontologically accurate. We demonstrate linkage differences between symptomatic and asymptomatic plaques and biological pathways involved in vascular lesion formation. Further analysis may provide insight into the vulnerable plaque pathobiology.


Sign in / Sign up

Export Citation Format

Share Document