coordinate gene expression
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yuki Yoshioka ◽  
Hiroshi Yamashita ◽  
Go Suzuki ◽  
Chuya Shinzato

Abstract Although numerous dinoflagellate species (Family Symbiodiniaceae) are present in coral reef environments, Acropora corals tend to select a single species, Symbiodinium microadriaticum, in early life stages, even though this species is rarely found in mature colonies. In order to identify molecular mechanisms involved in initial contact with native symbionts, we analyzed transcriptomic responses of Acropora tenuis larvae at 1, 3, 6, 12, and 24 h after their first contact, together with inoculation using non-native symbionts, including the non-symbiotic S. natans and the occasional symbiont, S. tridacnidorum. Some gene expression changes were detected in larvae inoculated with non-native symbionts 1 h post-inoculation (hpi)), but those returned to baseline levels afterward. In contrast, we found that the number of differentially expressed genes gradually increased in relation to inoculation time when larvae were exposed to native symbionts. As a specific response to native symbionts, upregulation of pattern recognition receptor-like and transporter genes, and suppression of cellular function genes related to immunity and apoptosis, were exclusively observed. These findings indicate that coral larvae recognize differences between symbionts, and when the appropriate symbionts infect, they coordinate gene expression to establish stable mutualism.


2021 ◽  
Author(s):  
Arthur C. Oliveira ◽  
Luiz A. Bovolenta ◽  
Lucas Figueiredo ◽  
James G. Patton ◽  
Danillo Pinhal

In metazoan, regulatory molecules tightly control gene expression. Among them, microRNAs (miRNAs) are key regulators of several important features, like cell proliferation, differentiation, and homeostasis. During miRNA biogenesis, the canonical strand that loads onto RISC may be switched, in a process called "arm switching". Due to the miRNA-to-target pairing peculiarities, switching events may lead to changes on the gene-targeted repertoire, promoting the modulation of a distinct set of biological routes. To understand how these events affect cell regulation, we carried out an extensive and detailed in silico analysis of RNA-seq datasets from several tissues and key developmental stages of zebrafish. We identified interesting patterns of miRNA arm switching occurrence, mainly associated with the control of protein coding genes during embryonic development. Additionally, our data shows that miRNA isoforms (isomiRs) seem to play an important role to differential arm usage. Our findings provide new insights on how such events emerge and coordinate gene expression regulation, opening perspectives for novel investigations in the area.


Author(s):  
Lei Li ◽  
Kun-hsiang Liu ◽  
Jen Sheen

Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root–shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 9 (7) ◽  
pp. 1391
Author(s):  
Lachlan Dow

Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae–bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products of tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally, how microalgae can modulate these small molecules to dampen their effects.


Author(s):  
Lachlan Dow

Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae–bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally how microalgae can modulate these small molecules to dampen their effects.


Author(s):  
Yuki Fujita ◽  
Toshihide Yamashita

Microglia are resident immune cells in the central nervous system (CNS). Microglia exhibit diversity in their morphology, density, electrophysiological properties, and gene expression profiles, and play various roles in neural development and adulthood in both physiological and pathological conditions. Recent transcriptomic analysis using bulk and single-cell RNA-seq has revealed that microglia can shift their gene expression profiles in various contexts, such as developmental stages, aging, and disease progression in the CNS, suggesting that the heterogeneity of microglia may be associated with their distinct functions. Epigenetic changes, including histone modifications and DNA methylation, coordinate gene expression, thereby contributing to the regulation of cellular state. In this review, we summarize the current knowledge regarding the epigenetic mechanisms underlying spatiotemporal and functional diversity of microglia that are altered in response to developmental stages and disease conditions. We also discuss how this knowledge may lead to advances in therapeutic approaches for diseases.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Aliaksandr A. Yarmishyn ◽  
Yi-Ping Yang ◽  
Kai-Hsi Lu ◽  
Yi-Chen Chen ◽  
Yueh Chien ◽  
...  

Abstract Background Glioblastoma (GBM) is the most lethal brain tumor characterized by high morbidity and limited treatment options. Tumor malignancy is usually associated with the epigenetic marks, which coordinate gene expression to ascertain relevant phenotypes. One of such marks is m6A modification of RNA, whose functional effects are dependent on the YTH family m6A reader proteins. Methods and results In this study, we investigated the expression of five YTH family proteins in different GBM microarray datasets from the Oncomine database, and identified YTHDF1 as the most highly overexpressed member of this family in GBM. By performing the knockdown of YTHDF1 in a GBM cell line, we found that it positively regulates proliferation, chemoresistance and cancer stem cell-like properties. Musashi-1 (MSI1) is a postranscriptional gene expression regulator associated with high oncogenicity in GBM. By knocking down and overexpressing MSI1, we found that it positively regulates YTHDF1 expression. The inhibitory effects imposed on the processes of proliferation and migration by YTHDF1 knockdown were shown to be partially rescued by concomitant overexpression of MSI1. MSI1 and YTHDF1 were shown to be positively correlated in clinical glioma samples, and their concomitant upregulation was associated with decreased survival of glioma patients. We identified the direct regulation of YTHDF1 by MSI1. Conclusions Given the fact that both proteins are master regulators of gene expression, and both of them are unfavorable factors in GBM, we suggest that in any future studies aimed to uncover the prognostic value and therapy potential, these two proteins should be considered together.


2020 ◽  
Author(s):  
Xinying Ren ◽  
Christian Cuba Samaniego ◽  
Richard M. Murray ◽  
Elisa Franco

AbstractMolecular feedback control circuits can improve robustness of gene expression at the single cell-level. This achievement can be offset by requirements of rapid protein expression, that may induce cellular stress, known as burden, that reduces colony growth. To begin to address this challenge we take inspiration by ‘division-of-labor’ in heterogeneous cell populations: we propose to combine bistable switches and quorum sensing systems to coordinate gene expression at the population-level. We show that bistable switches in individual cells operating in parallel yield an ultrasensitive response, while cells maintain heterogeneous levels of gene expression to avoid burden across all cells. Within a feedback loop, these switches can achieve robust reference tracking and adaptation to disturbances at the population-level. We also demonstrate that molecular sequestration enables tunable hysteresis in individual switches, making it possible to obtain a wide range of stable population-level expressions.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. e1008765 ◽  
Author(s):  
Xiaonan Fu ◽  
Pengcheng Liu ◽  
George Dimopoulos ◽  
Jinsong Zhu

Sign in / Sign up

Export Citation Format

Share Document