scholarly journals Effects of three antibiotics on growth and antioxidant response of Chlorella pyrenoidosa and Anabaena cylindrica

2021 ◽  
Vol 211 ◽  
pp. 111954
Author(s):  
Xueqing Zhong ◽  
Yali Zhu ◽  
Yujiao Wang ◽  
Quanyu Zhao ◽  
He Huang
2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2019 ◽  
Vol 25 (16) ◽  
pp. 1889-1912 ◽  
Author(s):  
Rosario Pastor ◽  
Josep A. Tur

Background: Antioxidant supplementation has become a common practice among athletes to theoretically achieve a reduction in oxidative stress, promote recovery and improve performance. Objective: To assess the effect of antioxidant supplements on exercise. Methods: A systematic literature search was performed up to January 2019 in MEDLINE via EBSCO and Pubmed, and in Web of Sciences based on the following terms: “antioxidants” [Major] AND “exercise” AND “adaptation”; “antioxidant supplement” AND “(exercise or physical activity)” AND “(adaptation or adjustment)” [MesH]. Thirty-six articles were finally included. Results: Exhaustive exercise induces an antioxidant response in neutrophils through an increase in antioxidant enzymes, and antioxidant low-level supplementation does not block this adaptive cellular response. Supplementation with antioxidants appears to decrease oxidative damage blocking cell-signaling pathways associated with muscle hypertrophy. However, upregulation of endogenous antioxidant enzymes after resistance training is blocked by exogenous antioxidant supplementation. Supplementation with antioxidants does not affect the performance improvement induced by resistance exercise. The effects of antioxidant supplementation on physical performance and redox status may vary depending on baseline levels. Conclusion: The antioxidant response to exercise has two components: At the time of stress and adaptation through genetic modulation processes in front of persistent pro-oxidant situation. Acute administration of antioxidants immediately before or during an exercise session can have beneficial effects, such as a delay in the onset of fatigue and a reduction in the recovery period. Chronic administration of antioxidant supplements may impair exercise adaptations, and is only beneficial in subjects with low basal levels of antioxidants.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Sign in / Sign up

Export Citation Format

Share Document