A novel method based on time series satellite data analysis to detect algal blooms

2020 ◽  
Vol 59 ◽  
pp. 101131
Author(s):  
Alba Germán ◽  
Verónica Andreo ◽  
Carolina Tauro ◽  
C. Marcelo Scavuzzo ◽  
Anabella Ferral
2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

1992 ◽  
Author(s):  
Robert P. D'Entremont ◽  
Donald P. Wylie ◽  
J. W. Snow ◽  
Michael K. Griffin ◽  
James T. Bunting

2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Maria-Veronica Ciocanel ◽  
Riley Juenemann ◽  
Adriana T. Dawes ◽  
Scott A. McKinley

AbstractIn developmental biology as well as in other biological systems, emerging structure and organization can be captured using time-series data of protein locations. In analyzing this time-dependent data, it is a common challenge not only to determine whether topological features emerge, but also to identify the timing of their formation. For instance, in most cells, actin filaments interact with myosin motor proteins and organize into polymer networks and higher-order structures. Ring channels are examples of such structures that maintain constant diameters over time and play key roles in processes such as cell division, development, and wound healing. Given the limitations in studying interactions of actin with myosin in vivo, we generate time-series data of protein polymer interactions in cells using complex agent-based models. Since the data has a filamentous structure, we propose sampling along the actin filaments and analyzing the topological structure of the resulting point cloud at each time. Building on existing tools from persistent homology, we develop a topological data analysis (TDA) method that assesses effective ring generation in this dynamic data. This method connects topological features through time in a path that corresponds to emergence of organization in the data. In this work, we also propose methods for assessing whether the topological features of interest are significant and thus whether they contribute to the formation of an emerging hole (ring channel) in the simulated protein interactions. In particular, we use the MEDYAN simulation platform to show that this technique can distinguish between the actin cytoskeleton organization resulting from distinct motor protein binding parameters.


Buildings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Thomas Danel ◽  
Zoubeir Lafhaj ◽  
Anand Puppala ◽  
Sophie Lienard ◽  
Philippe Richard

This article proposes a methodology to measure the productivity of a construction site through the analysis of tower crane data. These data were obtained from a data logger that records a time series of spatial and load data from the lifting machine during the structural phase of a construction project. The first step was data collection, followed by preparation, which consisted of formatting and cleaning the dataset. Then, a visualization step identified which data was the most meaningful for the practitioners. From that, the activity of the tower crane was measured by extracting effective lifting operations using the load signal essentially. Having used such a sampling technique allows statistical analysis on the duration, load, and curvilinear distance of every extracted lifting operation. The build statistical distribution and indicators were finally used to compare construction site productivity.


Sign in / Sign up

Export Citation Format

Share Document