Pilot-scale evaluation of green roofs with Sargassum biomass as an additive to improve runoff quality

2015 ◽  
Vol 75 ◽  
pp. 70-78 ◽  
Author(s):  
K. Vijayaraghavan ◽  
Franklin D. Raja
2017 ◽  
Vol 2017 (1) ◽  
pp. 119-138
Author(s):  
Blair Wisdom ◽  
Brad Van Anderson ◽  
Isaac Avila ◽  
Troy Gottschalk ◽  
Kurt Carson ◽  
...  
Keyword(s):  

2015 ◽  
Vol 37 ◽  
pp. 256-263 ◽  
Author(s):  
Ashleigh Cousins ◽  
Paul T. Nielsen ◽  
Sanger Huang ◽  
Rob Rowland ◽  
Bill Edwards ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 112 ◽  
Author(s):  
Agnieszka Karczmarczyk ◽  
Anna Baryła ◽  
Joanna Fronczyk ◽  
Agnieszka Bus ◽  
Józef Mosiej

Green roofs are constructions made of different layers, each serving a dedicated function. Substrates and materials used in their composition are essential from the point of view of rainwater retention and plant development, but they may have an adverse effect on runoff quality. Literature studies show that phosphorus and heavy metals are of main importance. The total roofs area covered with green increased in the last years in cities as they are efficient in retention of rainwater and delaying of the runoff, therefore, protecting the cities against floods. As green roofs filtrate a significant amount of rainwater, materials used in substrates composition should be carefully selected to protect urban receivers against pollution. The aim of this study was to assess phosphorus and heavy metals leaching from different green roof substrates and their components with the focus on green roof runoff quality. Both commercially made green roof substrates and often used compounds (construction aggregates) were tested in laboratory batch tests for P, Cu, Ni, Cd, and Zn content in extracts. Based on the results of this study, it could be emphasized that a large part of commonly used construction aggregates can be a source of phosphorus, some also can release elevated values of nickel. Therefore, the materials should be carefully tested before use in the green roof substrate composition, not only for their physical properties reflecting water retention capacity, but also for chemical composition.


2019 ◽  
Vol 136 (45) ◽  
pp. 48205 ◽  
Author(s):  
Gulsum Melike Urper‐Bayram ◽  
Burcu Sayinli ◽  
Reyhan Sengur‐Tasdemir ◽  
Turker Turken ◽  
Enise Pekgenc ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1922 ◽  
Author(s):  
S. Johana Grajales-Mesa ◽  
Grzegorz Malina

This study evaluates, under field conditions, the efficiency of a permeable reactive barrier (PRB) with compost and brown coal to remove trichloroethylene (TCE) (109 µg/L) from contaminated groundwater. Three stainless steel boxes (1.2 × 0.5 × 0.5 m) with the brown coal-compost mixture at three different mixing ratios of 1:1, 1:3, and 1:5 (by volume) were installed to simulate the PRB. Groundwater from the TCE-contaminated aquifer was pumped into the system at a flow rate of 3.6 L/h. Residence times in the boxes were of: 25, 20, 10 h, respectively. Effluent samples were analyzed for TCE and its daughter products: dichloroethylene (DCE), vinyl chloride (VC) and ethane. During the 198-day experimental period TCE concentrations in groundwater decreased below ≤1.1 µg/L, i.e., much lower than groundwater and drinking water standards in Poland. After 16 days cis-1,2-DCE was monitored indicating possible reductive dechlorination of TCE. However, complete transformation of TCE into non-toxic byproducts was not evidenced during the time of experiments, indicating that reductive dechlorination slowed down or stopped at DCE, and that the designed residence times were not long enough to allow the complete dechlorination process.


2014 ◽  
Vol 34 (1) ◽  
pp. 125-133 ◽  
Author(s):  
P. Mostbauer ◽  
L. Lombardi ◽  
T. Olivieri ◽  
S. Lenz

Water SA ◽  
2007 ◽  
Vol 30 (5) ◽  
Author(s):  
JS Swart ◽  
JP Engelbrecht

Sign in / Sign up

Export Citation Format

Share Document