Can soil conservation practices reshape the relationship between sediment yield and slope gradient?

2020 ◽  
Vol 142 ◽  
pp. 105630 ◽  
Author(s):  
Lei Wu ◽  
Yin He ◽  
Xiaoyi Ma
2012 ◽  
Vol 518-523 ◽  
pp. 4707-4711 ◽  
Author(s):  
Chun Xia Yang ◽  
Pei Qing Xiao ◽  
Bin Zhen ◽  
Zhen Zhou Shen ◽  
Li Li

The characteristics as well as the correlation between runoff and erosion was studied under 3 kinds of cover conditions of bare-slope, artificial grass slope and ecological-restoration slope with 20°slope gradient by runoff scouring intensities of 9l/min. The results showed that: (1) Sediment yield which sourced from artificial grass slope and ecological-restoration slope was separately decreased by 95% and 98% than bare slope, and the runoff reduced by 20% and 50% than bare slope respectively; The infiltration rates of the two kinds of grass slope were higher than the bare slope by 38.32% to 51.10% and 114%; (2) Sediment and runoff process showed that the stable state appeared respectively at 26min, 18min and 6min under bare slope, artificial grass slope and ecological-restoration slope, the amount of runoff was bare slope> artificial grass slope > ecological-restoration slope. (3) For bare slope and artificial grass slope, the relationship between sediment and runoff, sediment and the drag coefficient which both showed a negative correlation, but the correlation which from the ecological-restoration slope wasn’t obvious, so, further studies should carry out to promote runoff-sediment relations on ecological-restoration slope.


2017 ◽  
Author(s):  
Ghulam Nabi ◽  
Fiaz Hussain ◽  
Ray-Shyan Wu ◽  
Vinay Nangia ◽  
Riffat Bibi ◽  
...  

Abstract. This study evaluated parameters of soil erosion and optimization of micro watersheds by applying a semidistributed basin-scale Soil and Water Assessment Tool (SWAT) model in various small watersheds of the Chakwal and Attock districts of Pothwar, Pakistan. The model was calibrated and validated on a daily basis for a small catchment (Catchment-25) of the Dhrabi watershed without any soil conservation structures. Statistical measures (R2 and EN-S) were used to evaluate model performance; the model performed satisfactorily well for both surface runoff and sediment yield estimations, with the R2 and EN-S values both being greater than 0.75, during calibration (2009–2010) and validation (2011). The model was applied to various small watershed sites in the Chakwal and Attock districts after successful calibration and validation. Soil erosion estimation was performed at these sites having loose stone soil and water conservation structures and being under various slope gradient and vegetation cover conditions. The structures had significant effects, and the average sediment yield reduction engendered by the loose stone structures at the various sites varied from 54 to 98 %. The sediment yield and erosion reductions were also compared under conditions involving vegetation cover change. Agricultural land with winter wheat crops had a higher sediment yield level than did fallow land with crop residue, which facilitated sediment yield reduction along with the soil conservation structures. Analyzing various slope gradients revealed that all selected sites had a maximum slope area of less than 5 %; stone structures were installed at these sites to reduce sediment yield. Based on slope classification analysis, the model was upscaled for the whole districts of Chakwal and Attock. The results indicated that 60 % of Chakwal (4095 km2) and Attock (3918 km2) by area lies in a slope range of 0–4 %; this thus implies that considerable potential exists for implementing soil conservation measures by installing stone structures. Estimates revealed that minimum sediment yield reductions of 122,850 t year−1 in Chakwal District and 117,540 t year−1 in Attock District could be achieved by installing loose stone structures in 60 % of the agricultural areas of both districts having a slope of 0–4 %; these findings can serve as a reference for policymakers and planners. The overarching findings of this study show that the SWAT model provides reliable results for sediment yield and soil erosion estimation, which can be used in rocky mountainous watersheds for erosion control and watershed management.


2018 ◽  
Vol 38 ◽  
pp. 01033
Author(s):  
Wei Ying Sun ◽  
Pan Zhang ◽  
Li Li ◽  
Jiang Nan Chen

The areas with high and coarse sediment yield of the middle Yellow River is well known for its severe erosion, high sediment yields. Since 1982 when the 8 key soil and water conservation harnessing regions has been built, the ecological environment has been gradually improved and the amount of sediment and runoff entering the Yellow River has been reduced continuously. Some researchers considered that it was owing to the water and soil conservation works (WSCW), while others believed that it was caused by the rainfall variation, but this has not been quantified for the effect respectively. This paper deals with the effects of WSCW on runoff and sediment variation. The study has been carried out in the Sanchuanhe River watershed, where was listed as one of the 8 key soil and water conservation harnessing regions. The results show that the contribution rate of human activities was 80.2% after 1st harnessing stage (1970-1979), 43.0% after 2nd harnessing stage (1980-1989), in 3rd harnessing stage (1990-1996) it reached 98.4%, and was 44.8% after 4th harnessing stage (1997-2006). With regard to the influence on runoff reduction in the watershed, the contribution rate of human activities was 62.5% compared with the natural factors after 1st harnessing stage (1970-1979), 28.4% after 2nd harnessing stage (1980-1989), in 3rd harnessing stage (1990-1996) it reached 69.6%, and was 37.0% after 4th harnessing stage (1997-2006). The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. This study suggests that a combination of human activities and rainfall variation effectively reduces runoff and sediment delivery of the Loess Plateau. Generally The runoff reduction and contribution of rainfall variation to runoff reduction in this area were as large as human activities. After many years' harnessing the great benefit have been obtained in water and soil loss control in this watershed.


2022 ◽  
Vol 14 (2) ◽  
pp. 678
Author(s):  
Chong Wei ◽  
Zhiqiang Zhang ◽  
Zhiguo Wang ◽  
Lianhai Cao ◽  
Yichang Wei ◽  
...  

The relationship between water-sediment processes and landscape pattern changes has currently become a research hotspot in low-carbon water and land resource optimization research. The SWAT-VRR model is a distributed hydrological model which better shows the effect of land use landscape change on hydrological processes in the watershed. In this paper, the hydrological models of the Dapoling watershed were built, the runoff and sediment yield from 2006 to 2011 were simulated, and the relationship between landscape patterns and water-sediment yield was analyzed. The results show that the SWAT-VRR model is more accurate and reasonable in describing runoff and sediment yield than the SWAT model. The sub-basins whose soil erosion is relatively light are mostly concentrated in the middle reaches with a slope mainly between 0–5°. The NP, PD, ED, SPIIT, SHEI, and SHDI of the watershed increased slightly, and the COHESION, AI, CONTAG, and LPI showed a certain decrease. The landscape pattern is further fragmented, with the degree of landscape heterogeneity increasing and the connection reducing. The runoff, sediment yield and surface runoff are all extremely significantly negatively correlated with forest, which implies that for more complicated patch shapes of forest which have longer boundaries connecting with the patches of other landscape types, the water and sediment processes are regulated more effectively. Therefore, it can be more productive to carry out research on the optimization of water and soil resources under the constraint of carbon emission based on the SWAT-VRR model.


2015 ◽  
Vol 70 (2) ◽  
pp. 75-90 ◽  
Author(s):  
J. K. Mwangi ◽  
C. A. Shisanya ◽  
J. M. Gathenya ◽  
S. Namirembe ◽  
D. N. Moriasi

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhihai Yang ◽  
Ning Yin ◽  
Amin William Mugera ◽  
Yumeng Wang

PurposeThis paper analysed survey data of 715 rice-producing households in China to assess the determinants of adoption of five mutually exclusive soil conservation practices (SCPs) and their impact on rice yield and chemical fertiliser use.Design/methodology/approachThe multinomial endogenous treatment effects model was used to account for selection bias and endogeneity arising from both observed and unobserved heterogeneity.FindingsFarms that adopted SCPs as a package experienced an increase in rice yield and decrease in chemical fertiliser use. Adoption of SCPs as a package led to a 12.0% increase in yield and 15.2% decrease in chemical fertiliser use; these results have policy implications for the non-point source pollution control in the agricultural sector. In contrast, adoption of straw retention only significantly reduced yield by 4.9% and increased chemical fertiliser use by 18.1%.Originality/valueThe authors evaluate and compare multi-type of SCPs, such as straw retention, deep tillage and use of organic fertiliser, separately or in combination, and their impacts on smallholder farmers’ rice yield and chemical fertiliser usage.


Sign in / Sign up

Export Citation Format

Share Document