An integrating approach of cellular automata and ecological network to predict the impact of land use change on connectivity

2019 ◽  
Vol 98 ◽  
pp. 149-157 ◽  
Author(s):  
Yun Huang ◽  
Tie-Jun Liao
2020 ◽  
Vol 9 (3) ◽  
pp. 120-131
Author(s):  
Issana Meria Burhan ◽  
Ashfa Achmad ◽  
Putra Rizkiya ◽  
Zainuddin Hasan

The dynamics of urban development, followed by various opportunities and challenges for different social groups, indicate a growing sense of complexity, unpredictability, and insecurity about cities and emphasis a need to identify new sustainability strategies. This paper aims at predicting the land-use change of urban coastal areas in Banda Aceh and its impact on urban sustainability. It used an urban simulation model using Cellular Automata (CA), integrated into a LanduseSIM platform. There were three main steps as part of the research methodology: (1) preparation of current data on land uses (2015), (2) simulation of data using CA in LanduseSIM software, and (3) visualization of data and result. Accordingly, the final simulation of the year 2030 was completed, in two scenarios, as the basis to evaluate the impact of land-use change on urban sustainability in Banda Aceh. The study has revealed that the current development trend in the coastal area of Banda Aceh is consuming natural resources such as wetlands and vegetation, driven particularly by the planning of urban coastal region as a center of tourism and fishery, complemented by the upcoming Banda Aceh Outer-Ring Road project. The study recommends a reconsideration of the city strategies by decision-makers to achieve sustainability and ensure ecological balance.


2007 ◽  
Vol 34 (4) ◽  
pp. 708-724 ◽  
Author(s):  
Daniel Stevens ◽  
Suzana Dragićević

This study proposes an alternative cellular automata (CA) model, which relaxes the traditional CA regular square grid and synchronous growth, and is designed for representations of land-use change in rural-urban fringe settings. The model uses high-resolution spatial data in the form of irregularly sized and shaped land parcels, and incorporates synchronous and asynchronous development in order to model more realistically land-use change at the land parcel scale. The model allows urban planners and other stakeholders to evaluate how different subdivision designs will influence development under varying population growth rates and buyer preferences. A model prototype has been developed in a common desktop GIS and applied to a rapidly developing area of a midsized Canadian city.


2021 ◽  
Vol 10 (8) ◽  
pp. 503
Author(s):  
Hang Liu ◽  
Riken Homma ◽  
Qiang Liu ◽  
Congying Fang

The simulation of future land use can provide decision support for urban planners and decision makers, which is important for sustainable urban development. Using a cellular automata-random forest model, we considered two scenarios to predict intra-land use changes in Kumamoto City from 2018 to 2030: an unconstrained development scenario, and a planning-constrained development scenario that considers disaster-related factors. The random forest was used to calculate the transition probabilities and the importance of driving factors, and cellular automata were used for future land use prediction. The results show that disaster-related factors greatly influence land vacancy, while urban planning factors are more important for medium high-rise residential, commercial, and public facilities. Under the unconstrained development scenario, urban land use tends towards spatially disordered growth in the total amount of steady growth, with the largest increase in low-rise residential areas. Under the planning-constrained development scenario that considers disaster-related factors, the urban land area will continue to grow, albeit slowly and with a compact growth trend. This study provides planners with information on the relevant trends in different scenarios of land use change in Kumamoto City. Furthermore, it provides a reference for Kumamoto City’s future post-disaster recovery and reconstruction planning.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Vol 13 (2) ◽  
pp. 748
Author(s):  
Iana Rufino ◽  
Slobodan Djordjević ◽  
Higor Costa de Brito ◽  
Priscila Barros Ramalho Alves

The northeastern Brazilian region has been vulnerable to hydrometeorological extremes, especially droughts, for centuries. A combination of natural climate variability (most of the area is semi-arid) and water governance problems increases extreme events’ impacts, especially in urban areas. Spatial analysis and visualisation of possible land-use change (LUC) zones and trends (urban growth vectors) can be useful for planning actions or decision-making policies for sustainable development. The Global Human Settlement Layer (GHSL) produces global spatial information, evidence-based analytics, and knowledge describing Earth’s human presence. In this work, the GHSL built-up grids for selected Brazilian cities were used to generate urban models using GIS (geographic information system) technologies and cellular automata for spatial pattern simulations of urban growth. In this work, six Brazilian cities were selected to generate urban models using GIS technologies and cellular automata for spatial pattern simulations of urban sprawl. The main goal was to provide predictive scenarios for water management (including simulations) and urban planning in a region highly susceptible to extreme hazards, such as floods and droughts. The northeastern Brazilian cities’ analysis raises more significant challenges because of the lack of land-use change field data. Findings and conclusions show the potential of dynamic modelling to predict scenarios and support water sensitive urban planning, increasing cities’ coping capacity for extreme hazards.


2020 ◽  
Vol 12 (1) ◽  
pp. 626-636
Author(s):  
Wang Song ◽  
Zhao Yunlin ◽  
Xu Zhenggang ◽  
Yang Guiyan ◽  
Huang Tian ◽  
...  

AbstractUnderstanding and modeling of land use change is of great significance to environmental protection and land use planning. The cellular automata-Markov chain (CA-Markov) model is a powerful tool to predict the change of land use, and the prediction accuracy is limited by many factors. To explore the impact of land use and socio-economic factors on the prediction of CA-Markov model on county scale, this paper uses the CA-Markov model to simulate the land use of Anren County in 2016, based on the land use of 1996 and 2006. Then, the correlation between the land use, socio-economic data and the prediction accuracy was analyzed. The results show that Shannon’s evenness index and population density having an important impact on the accuracy of model predictions, negatively correlate with kappa coefficient. The research not only provides a reference for correct use of the model but also helps us to understand the driving mechanism of landscape changes.


Sign in / Sign up

Export Citation Format

Share Document