scholarly journals Combining MaxEnt model and landscape pattern theory for analyzing interdecadal variation of sugarcane climate suitability in Guangxi, China

2021 ◽  
Vol 131 ◽  
pp. 108152
Author(s):  
Suri Guga ◽  
Jie Xu ◽  
Dao Riao ◽  
kaiwei Li ◽  
Aru Han ◽  
...  
2021 ◽  
Vol 310 ◽  
pp. 107293
Author(s):  
Chong Wang ◽  
Xiaoyu Shi ◽  
Jiangang Liu ◽  
Jiongchao Zhao ◽  
Xiaozhi Bo ◽  
...  

2013 ◽  
Vol 15 (4) ◽  
pp. 560
Author(s):  
Yu ZHONG ◽  
Qian XING ◽  
Renjie LI ◽  
Junhai ZHANG ◽  
Rui CAO

Author(s):  
Ulf Grenander ◽  
Michael I. Miller

Pattern Theory provides a comprehensive and accessible overview of the modern challenges in signal, data, and pattern analysis in speech recognition, computational linguistics, image analysis and computer vision. Aimed at graduate students in biomedical engineering, mathematics, computer science, and electrical engineering with a good background in mathematics and probability, the text includes numerous exercises and an extensive bibliography. Additional resources including extended proofs, selected solutions and examples are available on a companion website. The book commences with a short overview of pattern theory and the basics of statistics and estimation theory. Chapters 3-6 discuss the role of representation of patterns via condition structure. Chapters 7 and 8 examine the second central component of pattern theory: groups of geometric transformation applied to the representation of geometric objects. Chapter 9 moves into probabilistic structures in the continuum, studying random processes and random fields indexed over subsets of Rn. Chapters 10 and 11 continue with transformations and patterns indexed over the continuum. Chapters 12-14 extend from the pure representations of shapes to the Bayes estimation of shapes and their parametric representation. Chapters 15 and 16 study the estimation of infinite dimensional shape in the newly emergent field of Computational Anatomy. Finally, Chapters 17 and 18 look at inference, exploring random sampling approaches for estimation of model order and parametric representing of shapes.


2019 ◽  
Vol 29 (6) ◽  
pp. 962-973 ◽  
Author(s):  
Zhiliang Wang ◽  
Bai Zhang ◽  
Xuezhen Zhang ◽  
Hongxu Tian

2021 ◽  
Vol 13 (11) ◽  
pp. 6326
Author(s):  
Xiye Zheng ◽  
Jiahui Wu ◽  
Hongbing Deng

Traditional villages are the historical and cultural heritage of people around the world. With the increases in urbanization and industrialization, the continuation of traditional villages and the inheritance of historical and cultural heritage are facing risk. Therefore, to grasp the spatial characteristics of them and the human–nature interaction mechanism in Southwest China, we analyzed the distribution pattern of traditional villages using the ArcGIS software. Then, we further analyzed the spatial clustering characteristics, influencing factors and landscape pattern, and put forward relevant protection countermeasures and suggestions. The results revealed that traditional villages in Southwest China were clustered, being mainly distributed in areas with relatively low elevation, gentle slopes, low relative positions, nearby water sources, and convenient transportation. They can be divided into four categories due to obvious differences in influencing factors such as elevation, slope, relative position, distance to the nearest river, population density, etc. The landscape pattern of traditional villages differed among the different clusters, being mainly composed of forests, shrubs, and cultivated land. With the increase in the buffer radius, the landscape pattern of them changed significantly. The results of this study reflect that traditional villages and the natural environment are interdependent, so the protection of traditional villages should carry out measures according to local conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Sadeeka Layomi Jayasinghe ◽  
Lalit Kumar

Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.


2021 ◽  
Vol 125 ◽  
pp. 107495
Author(s):  
Changjiang Liu ◽  
Fei Zhang ◽  
Verner Carl Johnson ◽  
Pan Duan ◽  
Hsiang-te Kung

Sign in / Sign up

Export Citation Format

Share Document