scholarly journals Comparing vegetation indices from Sentinel-2 and Landsat 8 under different vegetation gradients based on a controlled grazing experiment

2021 ◽  
Vol 133 ◽  
pp. 108363
Author(s):  
Qi Qin ◽  
Dawei Xu ◽  
Lulu Hou ◽  
Beibei Shen ◽  
Xiaoping Xin
2021 ◽  
Vol 13 (15) ◽  
pp. 2961
Author(s):  
Rui Jiang ◽  
Arturo Sanchez-Azofeifa ◽  
Kati Laakso ◽  
Yan Xu ◽  
Zhiyan Zhou ◽  
...  

Cloud cover hinders the effective use of vegetation indices from optical satellite-acquired imagery in cloudy agricultural production areas, such as Guangdong, a subtropical province in southern China which supports two-season rice production. The number of cloud-free observations for the earth-orbiting optical satellite sensors must be determined to verify how much their observations are affected by clouds. This study determines the quantified wide-ranging impact of clouds on optical satellite observations by mapping the annual total observations (ATOs), annual cloud-free observations (ACFOs), monthly cloud-free observations (MCFOs) maps, and acquisition probability (AP) of ACFOs for the Sentinel 2 (2017–2019) and Landsat 8 (2014–2019) for all the paddy rice fields in Guangdong province (APRFG), China. The ATOs of Landsat 8 showed relatively stable observations compared to the Sentinel 2, and the per-field ACFOs of Sentinel 2 and Landsat 8 were unevenly distributed. The MCFOs varied on a monthly basis, but in general, the MCFOs were greater between August and December than between January and July. Additionally, the AP of usable ACFOs with 52.1% (Landsat 8) and 47.7% (Sentinel 2) indicated that these two satellite sensors provided markedly restricted observation capability for rice in the study area. Our findings are particularly important and useful in the tropics and subtropics, and the analysis has described cloud cover frequency and pervasiveness throughout different portions of the rice growing season, providing insight into how rice monitoring activities by using Sentinel 2 and Landsat 8 imagery in Guangdong would be impacted by cloud cover.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Hung Nguyen Trong ◽  
The Dung Nguyen ◽  
Martin Kappas

This paper aims to (i) optimize the application of multiple bands of satellite images for land cover classification by using random forest algorithms and (ii) assess correlations and regression of vegetation indices of a better-performed land cover classification image with vertical and horizontal structures of tropical lowland forests in Central Vietnam. In this study, we used Sentinel-2 and Landsat-8 to classify seven land cover classes of which three forest types were substratified as undisturbed, low disturbed, and disturbed forests where forest inventory of 90 plots, as ground-truth, was randomly sampled to measure forest tree parameters. A total of 3226 training points were sampled on seven land cover types. The performance of Landsat-8 showed out-of-bag error of 31.6%, overall accuracy of 68%, kappa of 67.5%, while Sentinel-2 showed out-of-bag error of 14.3% and overall accuracy of 85.7% and kappa of 83%. Ten vegetation indices of the better-performed image were extracted to find out (i) the correlation and regression of horizontal and vertical structures of trees and (ii) assess the variation values between ground-truthing plots and training sample plots in three forest types. The result of the t test on vegetation indices showed that six out of ten vegetation indices were significant at p<0.05. Seven vegetation indices had a correlation with the horizontal structure, but four vegetation indices, namely, Enhanced Vegetation Index, Perpendicular Vegetation Index, Difference Vegetation Index, and Transformed Normalized Difference Vegetation Index, had better correlations r = 0.66, 0.65, 0.65, 0.63 and regression results were of R2 = 0.44, 0.43, 0.43, and 0.40, respectively. The correlations of tree height were r = 0.46, 0.43, 0.43, and 0.49 and its regressions were of R2 = 0.21, 0.19, 0.18, and 0.24, respectively. The results show the possibility of using random forest algorithm with Sentinel-2 in forest type classification in line with vegetation indices application.


2020 ◽  
Vol 12 (17) ◽  
pp. 2708 ◽  
Author(s):  
Qi Wang ◽  
Jiancheng Li ◽  
Taoyong Jin ◽  
Xin Chang ◽  
Yongchao Zhu ◽  
...  

Soil moisture is an important variable in ecological, hydrological, and meteorological studies. An effective method for improving the accuracy of soil moisture retrieval is the mutual supplementation of multi-source data. The sensor configuration and band settings of different optical sensors lead to differences in band reflectivity in the inter-data, further resulting in the differences between vegetation indices. The combination of synthetic aperture radar (SAR) data with multi-source optical data has been widely used for soil moisture retrieval. However, the influence of vegetation indices derived from different sources of optical data on retrieval accuracy has not been comparatively analyzed thus far. Therefore, the suitability of vegetation parameters derived from different sources of optical data for accurate soil moisture retrieval requires further investigation. In this study, vegetation indices derived from GF-1, Landsat-8, and Sentinel-2 were compared. Based on Sentinel-1 SAR and three optical data, combined with the water cloud model (WCM) and the advanced integral equation model (AIEM), the accuracy of soil moisture retrieval was investigated. The results indicate that, Sentinel-2 data were more sensitive to vegetation characteristics and had a stronger capability for vegetation signal detection. The ranking of normalized difference vegetation index (NDVI) values from the three sensors was as follows: the largest was in Sentinel-2, followed by Landsat-8, and the value of GF-1 was the smallest. The normalized difference water index (NDWI) value of Landsat-8 was larger than that of Sentinel-2. With reference to the relative components in the WCM model, the contribution of vegetation scattering exceeded that of soil scattering within a vegetation index range of approximately 0.55–0.6 in NDVI-based models and all ranges in NDWI1-based models. The threshold value of NDWI2 for calculating vegetation water content (VWC) was approximately an NDVI value of 0.4–0.55. In the soil moisture retrieval, Sentinel-2 data achieved higher accuracy than data from the other sources and thus was more suitable for the study for combination with SAR in soil moisture retrieval. Furthermore, compared with NDVI, higher accuracy of soil moisture could be retrieved by using NDWI1 (R2 = 0.623, RMSE = 4.73%). This study provides a reference for the selection of optical data for combination with SAR in soil moisture retrieval.


2021 ◽  
Author(s):  
Eatidal Amin ◽  
Santiago Belda ◽  
Luca Pipia ◽  
Zoltan Szantoi ◽  
Ahmed El Baroudy ◽  
...  

&lt;p&gt;Monitoring of crop phenology significantly assists agricultural managing practices and plays an important role in crop yield predictions. Multi-temporal satellite-based observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or deriving biophysical variables. The Northern Nile Delta represents about half of all agricultural lands of Egypt. In this region, intensifying farming systems are predominant, which translates into a pressure on water supply demand. Moreover, double cropping rotations schemes are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive crop growth cycles. This study presents a framework for crop phenological characterization based on high spatial and temporal resolution time series of green Leaf Area Index (LAI). Particularly, NASA's Harmonized Landsat 8 and Sentinel-2 (HLS) surface reflectance dataset was used. The HLS dataset provides seamless products from both satellites, enabling global land observations every 2-3 days at 30m. A green LAI retrieval model was originally trained using ground-based LAI measurements with Gaussian processes technique and validated for Sentinel-2 (R2: 0.7, RMSE= 0.67m2/m2) (Amin et al., 2020). Given the compatible spectral bands configuration of both sensors, a new model for Landsat 8 was adapted from the original one. Both models were implemented in an HLS image based automated retrieval chain obtaining therefore two different LAI time series, which were spatially averaged per crop parcel according to the ground data at disposal. The subsequent analysis was performed based on the time series phenological pre-processing and modelling implemented in the in-house developed scientific time series toolbox DATimeS (Belda et al., 2020). The proposed framework permitted to determine the crop patterns for four consecutive years (2016-2019), identifying one or two seasons per year, for single (e.g. grape, citrus) or double-cropping (e.g. maize-onion, maize-wheat, rice-clover), respectively. Alongside, each detected crop was characterized by retrieving a selected set of phenological parameters, which were contrasted with respect to the established crop type calendar (planting and harvesting dates) and for each crop type, the annual mean value was computed and the intra annual variability within the four years was assessed.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Amin, E., Verrelst, J., Rivera-Caicedo, J. P., Pipia, L., Ruiz-Verd&amp;#250;, A., &amp; Moreno, J. (2020). Prototyping Sentinel-2 green LAI and brown LAI products for cropland monitoring. Remote Sensing of Environment, 112168.&lt;/p&gt;&lt;p&gt;Belda, S., Pipia, L., Morcillo-Pallar&amp;#233;s, P., Rivera-Caicedo, J. P., Amin, E., De Grave, C., &amp; Verrelst, J. (2020). DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environmental Modelling &amp; Software, 104666.&lt;/p&gt;


2019 ◽  
Vol 6 (2) ◽  
Author(s):  
Carla Talita Pertille ◽  
Marcos Felipe Nicoletti ◽  
Larissa Regina Topanotti ◽  
Thiago Floriani Stepka

This research aimed to estimate the biomass of the trunk area of a Pinus taeda L. stand from vegetation indices from Landsat-8/OLI and Sentinel-2/MSI optical remote sensors. In order to obtain the biomass, a forest inventory was carried out with the installation of 33 circular plots of 400 m², in which all the individuals had the diameter at breast height (cm) and the total height (m) measured. Then, 30 trees were scaled by the Smalian method. The individual tree volume was estimated by the Meyer regression volumetric equation. The biomass was obtained through the product of the individual tree volume by the wood basic density. Subsequently, aerial biomass was obtained per plot. The processed orbital images were gathered from the Landsat-8/OLI and Sentinel-2/MSI sensors. We derived 19 vegetation indices for both images, which were correlated with the biomass per plot. The indexes with the best correlation with the biomass were considered as regression variables to develop models by the Stepwise technique (Backward and Forward). The correlation was significant among the variables and the best model was derived from the Landsat-8 data, which estimated the biomass per plot with an error of 8.75% and an adjusted coefficient of determination of 0.8173. Nevertheless, the statistical analysis revealed that there was no significant difference between the biomass estimated by the inventory and by the remotely located data.


2020 ◽  
Vol 12 (18) ◽  
pp. 3068 ◽  
Author(s):  
Marta Prada ◽  
Carlos Cabo ◽  
Rocío Hernández-Clemente ◽  
Alberto Hornero ◽  
Juan Majada ◽  
...  

Forest management treatments often translate into changes in forest structure. Understanding and assessing how forests react to these changes is key for forest managers to develop and follow sustainable practices. A strategy to remotely monitor the development of the canopy after thinning using satellite imagery time-series data is presented. The aim was to identify optimal remote sensing Vegetation Indices (VIs) to use as time-sensitive indicators of the early response of vegetation after the thinning of sweet chestnut (Castanea Sativa Mill.) coppice. For this, the changes produced at the canopy level by different thinning treatments and their evolution over time (2014–2019) were extracted from VI values corresponding to two trials involving 33 circular plots (r = 10 m). Plots were subjected to one of the following forest management treatments: Control with no intervention (2800–3300 stems ha−1), Treatment 1, one thinning leaving a living stock density of 900–600 stems ha−1 and Treatment 2, a more intensive thinning, leaving 400 stems ha−1. Time series data from Landsat-8 and Sentinel-2 were collected to calculate values for different VIs. Canopy development was computed by comparing the area under curves (AUCs) of different VI time-series annually throughout the study period. Soil-Line VIs were compared to the Normalized Vegetation Index (NDVI) revealing that the Second Modified Chlorophyll Absorption Ratio Index (MCARI2) more clearly demonstrated canopy evolution tendencies over time than the NDVI. MCARI2 data from both L8 and S2 reflected how the influence of treatment on the canopy cover decreases over the years, providing significant differences in the thinning year and the year after. Metrics derived from the MCARI2 time-series also demonstrated the capacity of the canopy to recovery to pretreatment coverage levels. The AUC method generates a specific V-shaped time-signature, the vertex of which coincides with the thinning event and, as such, provides forest managers with another tool to assist decision making in the development of sustainable forest management strategies.


2020 ◽  
Vol 69 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Kishan Singh Rawat ◽  
Sudhir Kumar Singh ◽  
Ram L. Ray ◽  
Szilárd Szabó ◽  
Sanjeev Kumar

The objective was to parameterize a modified water cloud model using crop coefficients (A and B). These crop coefficients were derived from Landsat-8 and Sentinel-2 data. Whereas the coefficients C and D are of soil parameters. The water cloud model was modified using crop coefficients by minimizing the RMSE between observed VVσ0 and Sentinel-1 based simulated VVσ0. The comparison with observed and simulated VV polarized σ0 showed low RMSE (0.81 dB) and strong R2 of 0.98 for NDVI-EVI combination. However, based on other possible combinations of vegetation indices VVσ0 and simulated VVσ0 do not show a good statistical agreement. It was observed that the errors in crop coefficients (A and B) are sensitive to errors in initial vegetation/canopy descriptor parameters.


Author(s):  
Muhammad Danish Siddiqui ◽  
Arjumand Z Zaidi

<span>Seaweed is a marine plant or algae which has economic value in many parts of the world. The purpose of <span>this study is to evaluate different satellite sensors such as high-resolution WorldView-2 (WV2) satellite <span>data and Landsat 8 30-meter resolution satellite data for mapping seaweed resources along the coastal<br /><span>waters of Karachi. The continuous monitoring and mapping of this precious marine plant and their <span>breeding sites may not be very efficient and cost effective using traditional survey techniques. Remote <span>Sensing (RS) and Geographical Information System (GIS) can provide economical and more efficient <span>solutions for mapping and monitoring coastal resources quantitatively as well as qualitatively at both <span>temporal and spatial scales. Normalized Difference Vegetation Indices (NDVI) along with the image <span>enhancement techniques were used to delineate seaweed patches in the study area. The coverage area of <span>seaweed estimated with WV-2 and Landsat 8 are presented as GIS maps. A more precise area estimation <span>wasachieved with WV-2 data that shows 15.5Ha (0.155 Km<span>2<span>)of seaweed cover along Karachi coast that is <span>more representative of the field observed data. A much larger area wasestimated with Landsat 8 image <span>(71.28Ha or 0.7128 Km<span>2<span>) that was mainly due to the mixing of seaweed pixels with water pixels. The <span>WV-2 data, due to its better spatial resolution than Landsat 8, have proven to be more useful than Landsat<br /><span>8 in mapping seaweed patches</span></span></span></span></span></span></span></span></span></span></span></span></span></span><br /><br class="Apple-interchange-newline" /></span></span></span></span></span>


2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


Sign in / Sign up

Export Citation Format

Share Document