scholarly journals The impact of extreme flooding events and anthropogenic stressors on the macrobenthic communities’ dynamics

2008 ◽  
Vol 76 (3) ◽  
pp. 553-565 ◽  
Author(s):  
P.G. Cardoso ◽  
D. Raffaelli ◽  
A.I. Lillebø ◽  
T. Verdelhos ◽  
M.A. Pardal
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Rouzbeh Nazari ◽  
Haralambos Vasiliadis ◽  
Maryam Karimi ◽  
Md Golam Rabbani Fahad ◽  
Stanley Simon ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Billie Ann Brotman

PurposeFlood damage to uninsured single-family homes shifts the entire burden of costly repairs onto the homeowner. Homeowners in the United States and in much of Europe can purchase flood insurance. The Netherlands and Asian countries generally do not offer flood insurance protection to homeowners. Uninsured households incur the entire cost of repairing/replacing properties damaged due to flooding. Homeowners’ policies do not cover damage caused by flooding. The paper examines the link between personal bankruptcy and the severity of flooding events, property prices and financial condition levels.Design/methodology/approachA fully modified ordinary least squares (FMOLS) regression model is developed which uses personal bankruptcy filings as its dependent variable during the years 2000 through 2018. This time-series model considers the association between personal bankruptcy court filings and costly, widespread flooding events. Independent variables were selected that potentially act as mitigating factors reducing bankruptcy filings.FindingsThe FMOLS regression results found a significant, positive association between flooding events and the total number of personal bankruptcy filings. Higher flooding costs were associated with higher bankruptcy filings. The Home Price Index is inversely related to the bankruptcy dependent variable. The R-squared results indicate that 0.65% of the movement in the dependent variable personal bankruptcy filings is explained by the severity of a flooding event and other independent variables.Research limitations/implicationsThe severity of the flooding event is measured using dollar losses incurred by the National Flood Insurance program. A macro-case study was undertaken, but the research results would have been enhanced by examining local areas and demographic factors that may have made bankruptcy filing following a flooding event more or less likely.Practical implicationsThe paper considers the impact of the natural disaster flooding on bankruptcy rates filings. The findings may have implications for multi-family properties as well as single-family housing. Purchasing flood insurance generally mitigates the likelihood of severe financial risk to the property owner.Social implicationsNatural flood insurance is underwritten by the federal government and/or by private insurers. The financial health of private property insurers that underwrite flooding and their ability to meet losses incurred needs to be carefully scrutinized by the insured.Originality/valuePrior studies analyzing the linkages existing between housing prices, natural disasters and bankruptcy used descriptive data, mostly percentages, when considering this association. The study herein posits the same questions as these prior studies but used regression analysis to analyze the linkages. The methodology enables additional independent variables to be added to the analysis.


2021 ◽  
Author(s):  
Olga Gavrichkova ◽  
Dario Liberati ◽  
Viktoriya Varyushkina ◽  
Kristina Ivashchenko ◽  
Paolo De Angelis ◽  
...  

<p>Release of heavy metals, salts and other toxic agents in the environment is of increasing concern in urban areas. Contaminants not solely decline the quality of the local environment and affect the health of human population and urban ecosystems but are also spread through runoff and leaching into non-contaminated areas. Urban lawns are the most distributed green infrastructure in the cities. Management of lawn system may either exacerbate the negative effects of contaminants on lawn functioning either help to withstand the toxic effects and maintain the lawn ecosystem health and the efficient release of ecosystem services.  </p><p>The aim of this study was to evaluate the interactions between the lawn management, the lawn functioning, and the release into the soil of typical urban contaminants. For this purpose, <em>Festuca arundinacea</em> grass was planted in a turf-sand mixture with and without amendment addition (zeolite + vermicompost). To reproduce the impact of traffic-related contaminants in proximity of the road, pots were treated with a solution containing de-icing salt (NaCl) and 6 heavy metals (Zn, Cd, Pb, Cr, Cu, Ni), imitating road runoff solution. After contamination, half of pots was maintained at optimum soil water content (Smart irrigation), another half was left to periodical drying in order to simulate conditions with discontinuous watering (Periodical irrigation). The same experimental scheme was reproduced for unplanted soil. CO<sub>2</sub> net ecosystem exchange (NEE), soil and ecosystem respiration as well as flux from unplanted soil (heterotrophic respiration) were measured shortly after the treatment (short-term) and up 3 months since the treatment start (long-term).</p><p>Soil amendment stimulated plant productivity and increased the efficiency of the system in C uptake (+56% NEE). A relevant reduction of NEE was observed from 14 to 40 days after the application of traffic-related contaminants in both amended and non amended pots. During this period the contaminants had the greatest impact on lawn NEE subjected to Periodic irrigation (-49% and -66% in amended and non amended pots, respectively), while lawn under Smart irrigation was less affected (-35% and -26% in amended and non amended pots, respectively). Different respiration sources (ecosystem respiration, soil respiration, heterotrophic respiration) were characterized by different sensitivity to management and contamination. Heterotrophic flux was not sensitive to soil amending but declined with contamination with enhanced negative effect under Smart irrigation. Response of ecosystem respiration to contamination was less pronounced in confront to soil respiration suggesting leaf-level buffering.    </p><p>Three months later,  the effect of contaminants on lawn gas exchange ceased for all treated pots. Instead, the irrigation effect persisted depending on whether pots were amended or not. In non amended pots NEE was reduced by 18% under Periodic irrigation, while this effect was not present in amended pots. We conclude, that performance of such green infrastructure as lawns in terms of C sequestration under multiple anthropogenic stressors could be efficiently improved through soil amending and irrigation control.</p><p>Current research was financially supported by RFBR No. 19-29-05187 and RSF No. 19-77-30012.</p>


2018 ◽  
Vol 15 (9) ◽  
pp. 2587-2599 ◽  
Author(s):  
Sebastiaan Mestdagh ◽  
Leila Bagaço ◽  
Ulrike Braeckman ◽  
Tom Ysebaert ◽  
Bart De Smet ◽  
...  

Abstract. Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater–bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the regulation of ecosystem functioning and the impact of habitat alterations such as sediment deposition.


Author(s):  
Didier L. Baho ◽  
Stina Drakare ◽  
Richard K. Johnson ◽  
Craig R. Allen ◽  
David G. Angeler

<p>Research focusing on biodiversity responses to the interactions of ecosystem size and anthropogenic stressors are based mainly on correlative gradient studies, and may therefore confound size-stress relationships due to spatial context and differences in local habitat features across ecosystems. We investigated how local factors related to anthropogenic stressors (<em>e.g.,</em> eutrophication) interact with ecosystem size to influence species diversity. In this study, constructed lake mesocosms (with two contrasting volumes: 1020 (shallow mesocosms) and 2150 (deep mesocosms) litres) were used to simulate ecosystems of different size and manipulated nutrient levels to simulate mesotrophic and hypertrophic conditions. Using a factorial design, we assessed how the interaction between ecosystem size and nutrients influences phytoplankton diversity. We assessed community metrics (richness, diversity, evenness and total biovolumes) and multivariate community structure over a growing season (May to early November 2011). Different community structures were found between deep and shallow mescosoms with nutrient enrichment: Cyanobacteria dominated in the deep and Charophyta in the shallow mesocosms. In contrast, phytoplankton communities were more similar to each other in the low nutrient treatments; only Chlorophyta had generally a higher biovolume in the shallow compared to the deep mesocosms. These results suggest that ecosystem size is not only a determinant of species diversity, but that it can mediate the influence of anthropogenic effects on biodiversity. Such interactions increase the uncertainty of global change outcomes, and should therefore not be ignored in risk/impact assessment and management.</p>


2021 ◽  
pp. 1420326X2110485
Author(s):  
Junqi Wang ◽  
Chuck Wah Yu ◽  
Shi-Jie Cao

2018 ◽  
Vol 45 ◽  
pp. 389-395 ◽  
Author(s):  
Branka Cuca ◽  
Luigi Barazzetti

Abstract. The monitoring of hazardous events through change detection has an important role in the emergency management. Such actions can be performed shortly after the hazardous event for first rapid mapping but also over longer periods of time for recovery purposes and risk mapping. The use of medium resolution free-of-charge multi-spectral satellite imagery for purposes of flood extension and impact monitoring can be extremely valuable due to their ability to offer an “easy” and remote access to information, even in cases of extreme weather conditions, but also due to their high compatibility with GIS environments. The case study regards Centa River estuary that hosts an important archaeological site of Albenga within the boundaries of its riverbed. The authors propose a workflow that uses Copernicus Sentinel-2 data to provide the comparison changes firstly in the single relevant bands and successively in the indexes NDVI e NDWI, suitable for the estimation of water component. The results of this study were useful for observing the extension of the flooded area, to evaluate its impact on the archaeological remains and to further propose more targeted UAV-born and ground survey.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2677 ◽  
Author(s):  
Mario Maiolo ◽  
Riccardo Alvise Mel ◽  
Salvatore Sinopoli

Sea hazards are increasingly threatening worldwide coastal areas, which are among the most strategic resources of the Earth in supporting human population, economy and the environment. These hazards enhance erosion processes and flooding events, producing severe socio-economic impacts and posing a challenge to ocean engineers and stakeholders in finding the optimal strategy to protect both the coastal communities and the health of the environment. The impact of coastal hazards is actually worsened not only by an enhancing rate of relative sea level rise and storminess driven by climate changes, but also by increasing urban pressure related to the development of the sea economy. With regard to larger environmental awareness and climate change adaptation needs, the present study focuses on a stepwise approach that supports the actions for coastal protection at Calabaia Beach, which is located in the Marine Experimental Station of Capo Tirone (Cosenza, Italy). These actions first aim to protect humans and coastal assets, then to restore the environment and the local habitat, overcoming the need for the emergency interventions carried out in the last decades and pointing out that healthy ecosystems are more productive and support a sustainable marine economy (“Blue Growth”).


Plant Ecology ◽  
2020 ◽  
Vol 221 (9) ◽  
pp. 773-793 ◽  
Author(s):  
Lorena Torres-Martínez ◽  
Mareli Sánchez-Julia ◽  
Elizabeth Kimbrough ◽  
Trey C. Hendrix ◽  
Miranda Hendrix ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document