Metal speciation in salt marsh sediments: Influence of halophyte vegetation in salt marshes with different morphology

2015 ◽  
Vol 167 ◽  
pp. 248-255 ◽  
Author(s):  
Sílvia Pedro ◽  
Bernardo Duarte ◽  
Pedro Raposo de Almeida ◽  
Isabel Caçador
2009 ◽  
Vol 75 (23) ◽  
pp. 7461-7468 ◽  
Author(s):  
Nicole S. Moin ◽  
Katelyn A. Nelson ◽  
Alexander Bush ◽  
Anne E. Bernhard

ABSTRACT Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the water column/sediment clade. At all three site types, AOA were always more abundant than β-AOB based on quantitative PCR of amoA genes. At some sites, we detected 109 AOA amoA gene copies g of sediment−1. Ratios of AOA to β-AOB varied over 2 orders of magnitude among sites and sampling dates. Nevertheless, abundances of AOA and β-AOB amoA genes were highly correlated. Abundance of 16S rRNA genes affiliated with Nitrosopumilus maritimus, Crenarchaeota group I.1b, and pSL12 were positively correlated with AOA amoA abundance, but ratios of amoA to 16S rRNA genes varied among sites. We also observed a significant effect of pH on AOA abundance and a significant salinity effect on both AOA and β-ΑΟΒ abundance. Our results expand the distribution of AOA to salt marshes, and the high numbers of AOA at some sites suggest that salt marsh sediments serve as an important habitat for AOA.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8074
Author(s):  
Richard McKinney ◽  
Alana Hanson ◽  
Roxanne Johnson ◽  
Michael Charpentier

Measurement of the apparent conductivity of salt marsh sediments using electromagnetic induction (EMI) is a rapid alternative to traditional methods of salinity determination that can be used to map soil salinity across a marsh surface. Soil salinity measures can provide information about marsh processes, since salinity is important in determining the structure and function of tidally influenced marsh communities. While EMI has been shown to accurately reflect salinity to a specified depth, more information is needed on the potential for spatial and temporal variability in apparent conductivity measures that may impact the interpretation of salinity data. In this study we mapped soil salinity at two salt marshes in the Narragansett Bay, RI estuary monthly over the course of several years to examine spatial and temporal trends in marsh salinity. Mean monthly calculated salinity was 25.8 ± 5.5 ppt at Narrow River marsh (NAR), located near the mouth of the Bay, and 17.7 ± 5.3 ppt at Passeonkquis marsh (PAS) located in the upper Bay. Salinity varied seasonally with both marshes, showing the lowest values (16.3 and 8.3 ppt, respectively) in April and highest values (35.4 and 26.2 ppt, respectively) in August. Contour plots of calculated salinities showed that while the mean whole-marsh calculated salinity at both sites changed over time, within-marsh patterns of higher versus lower salinity were maintained at NAR but changed over time at PAS. Calculated salinity was significantly negatively correlated with elevation at NAR during a sub-set of 12 sample events, but not at PAS. Best-supported linear regression models for both sites included one-month and 6-month cumulative rainfall, and tide state as potential factors driving observed changes in calculated salinity. Mapping apparent conductivity of salt marsh sediments may be useful both identifying within-marsh micro-habitats, and documenting marsh-wide changes in salinity over time.


Author(s):  
Xuefeng Peng ◽  
Qixing Ji ◽  
John H. Angell ◽  
Patrick J. Kearns ◽  
Jennifer L. Bowen ◽  
...  

2010 ◽  
Vol 181 (1-4) ◽  
pp. 243-254 ◽  
Author(s):  
Cristian Mugnai ◽  
Silvia Giuliani ◽  
Luca G. Bellucci ◽  
Claudio Carraro ◽  
Maurizio Favotto ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
John H. Angell ◽  
Xuefeng Peng ◽  
Qixing Ji ◽  
Ian Craick ◽  
Amal Jayakumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document