scholarly journals Energy Efficiency Comparison of a Centralized and a Multi-agent Market Based Heating System in a Field Test

2014 ◽  
Vol 62 ◽  
pp. 170-179 ◽  
Author(s):  
Olaf van Pruissen ◽  
Armin van der Togt ◽  
Ewoud Werkman
2022 ◽  
Vol 2160 (1) ◽  
pp. 012046
Author(s):  
Haofan Ji

Abstract At present, China’s urban heating system consumes a lot of energy and is seriously polluted. Our government is working hard to develop urban natural gas regional heating systems to replace traditional coal-fired heating to reduce the serious impact of coal combustion emissions on the urban atmospheric environment during the heating season. On this basis, the characteristics of traditional energy efficiency comparison methods and the problems encountered by these traditional methods in the energy efficiency analysis and application of distributed energy cold, hot and power multigeneration systems in China are analyzed, and the comparable performance efficiency analysis methods suitable for the application of cold, hot and hot power multiple production applications of distributed energy are studied.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1698
Author(s):  
Dimitris Damigos ◽  
Christina Kaliampakou ◽  
Anastasios Balaskas ◽  
Lefkothea Papada

Energy poverty is a multidimensional and continuously growing societal problem, with political roots. In pursuit of mitigating the problem, the European Commission has adopted a bundle of policies, such as consumer protection measures, short-term financial interventions, motivations for energy efficiency (e.g., energy retrofits and replacement of old household appliance) and information campaigns, among others. There is no doubt, however, that increasing the income of vulnerable households would be the most preferred and effective option. Focusing on energy efficiency, a measure typically incorporated in the National Energy and Climate Plans (NECPs) of many Member States as a means to fight energy poverty, this paper aims to shed light on the need to gradually move towards more localized—not to say personalized—actions. In this direction, a labeled choice-based experiment is used, which involves a hypothetical selection between three alternative energy interventions, i.e., house retrofit, upgrading of heating system and upgrading of household electrical appliances. The research aims to integrate the preferences of households from the choice experiment with indicators of energy poverty and establish a connection between energy poverty and energy efficiency investment decisions. The results demonstrate that households’ preferences are affected by qualitative and quantitative aspects of energy vulnerability and sociodemographic characteristics. Furthermore, vulnerable households seem to be more prone to the so-called “discounting gap”, as previous studies also suggest. These findings are worrisome because, without tailor-made support, these households may never escape the vicious circle of energy poverty. To this end, the survey could provide useful information to policy-makers towards developing more robust policies of energy poverty alleviation.


2021 ◽  
Author(s):  
Xinliang Yang ◽  
Hanju Ding ◽  
Yanda Lv ◽  
Yuanyuan Lu ◽  
Yuming Zhao ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 124-131
Author(s):  
K. A. Ignatiev ◽  
E. R. Giniyatullin ◽  
M. G. Ziganshin

Combined air and water heating schemes have been actively used recently for heating public and residential premises. They have certain advantages in countries with a warm climate, whereas in a temperate climate, their use may be unfeasible. The most effective regulation of the heating system in the building can be expected, if all the technology specifics are taken into account, in terms of both the purpose of the room and the methods of regulation. A system focused only on weather-based regulation falls short of meeting to energy-efficient control classes: a heat carrier with the same temperature is distributed among rooms with different requirements for temperature and humidity characteristics. The issues of ensuring the energy efficiency of the combined air and water heating system in public buildings for the temperate continental climate of Russia — the academic building (AB) and laboratory building (LB) of the Kazan State Energy University (KSEU) have been considered. Heating devices of the KSEU heating system have manual control valves installed in the premises, or radiator valves with thermostatic heads, but without room controllers, which does not meet the energy-efficient control classes. An experimental survey of the functioning of the heating system of the KSEU buildings during the 2019 – 2020 and 2020 – 2021 heating seasons was conducted. The optical pyrometry method was used to measure the temperature of the surfaces of windows, walls and elements of the heating system, as well as the temperature and humidity of the air in lecture rooms and corridors of the AB and LB of the KSEU. The parameters of heating devices and indoor air in rooms of various purposes were found compliant with the current sanitary and hygienic requirements. At the same time, the need to switch to a higher class of regulation has been revealed, since, under the current situation, the parameters of the indoor air depend on the outdoor temperature: in the abnormally warm winter of 2020, the indoor air temperature was at the edge of the maximum permissible value, while in the normal climate of winter of 2021, it was at the edge of the minimum permissible value.


2017 ◽  
Vol 13 (4) ◽  
pp. 1-25
Author(s):  
Hui Li ◽  
Sébastien Le Beux ◽  
Martha Johanna Sepulveda ◽  
Ian O'connor

2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Jia ◽  
Xuan Zhou ◽  
Wei Feng ◽  
Yuanda Cheng ◽  
Qi Tian ◽  
...  

The simultaneous need for energy efficiency and indoor comfort may not be met by existing air source heat pump (ASHP) technology. The novelty of this study lies in the use of a new gravity-driven radiator as the indoor heating terminal of ASHPs, aiming to provide an acceptable indoor comfort with improved energy efficiency. To confirm and quantify the performance improvement due to the proposed system retrofit, a field test was conducted to examine the system performance under real conditions. In the tests, measurements were made on the refrigerant- and air-side of the system to characterize its operational characteristics. Results showed that the proposed radiator has a rapid thermal response, which ensures a fast heat output from the system. The proposed system can create a stable and uniform indoor environment with a measured air diffusion performance index of 80%. The energy efficiency of the proposed system was also assessed based on the test data. It was found that the system’s first law efficiency is 42.5% higher than the hydraulic-based ASHP system. In terms of the second law efficiency, the compressor contributes the most to the overall system exergy loss. The exergy efficiency of the proposed system increases with the outdoor temperature and varies between 35.02 and 38.93% in the test period. The research results and the analysis methodology reported in this study will be useful for promoting the technology in search of energy efficiency improvement in residential and commercial buildings.


Author(s):  
Tetiana Zheliuk

Introduction. One of the main directions of ensuring the sustainable development of the national economy and its regions is the reform of the energy sector, which can take place through the modernization or innovation of its components. An important component of these reforms is to provide the population with the environmentally friendly and socially safe thermal energy. At the present stage of management, the heat supply is the most costly branch of public utilities, which is supplemented by the problems of the inefficient fuel balance structure; worn-out infrastructure and low energy efficiency. This highlights the need to study the management of modernization of the heat supply system in the region in view of the declared vectors of the long-term development. Object of research is the process of managing the modernization of the heat supply system in the region. Subject of the research is a set of scientific approaches and practical mechanisms of modernization of the heat supply system of the region in the context of ensuring its sustainable development. Objective. The conceptual foundations of modernization of the heat supply system of the region in the context of its sustainable development through the introduction of the innovative technologies both in the management process and in the energy sector itself is substantiated in the paper. Methods. The following general scientific methods were used during the research process: system, structural analysis, grouping, when studying the structural elements and isolation of problems of development of the heat supply system of the region; historical analysis, when considering the scientific principles and institutional mechanism of modernization of the region’s heat supply system; comparative analysis in assessing the possibilities of the green transition of the heat supply system of the region and also when considering the features of the use of grant resources in the modernization of the heat supply system of the region; economic analysis in assessing the current state of the district heating system, etc. results. The essential determinants of the heat supply system of the region are analyzed, the objective need, organizational and economic mechanisms for managing the modernization of the heat supply, taking into account the need for the balanced development of the energy sector of the region are verified. The scientific novelty of the obtained results lies in the substantiation of the conceptual approaches to the management of modernization of the heat supply system of the region by innovating the forms and methods of managerial influence on the heat supply system of the region. The conclusion is made about the following effective approaches in managing the modernization of the district heating system: planning of the sustainable development of the energy sector, development of programs for modernization of the district heating, implementation of the infrastructure and soft projects, implementation of the international projects, motivation of households and entrepreneurship in the heat sector, participation in the grant requests, in state crediting programs, realization of the business projects in the field of production of environmentally friendly fuel; conducting an information campaign among the population and other key market players to raise the awareness of the energy efficiency financing mechanisms. The practical significance of the obtained results is that the developed recommendations will be used to improve the organizational and economic mechanism of management of the district heating system modernization and ensure its sustainable development.


Sign in / Sign up

Export Citation Format

Share Document