scholarly journals Adsorption Characteristics of Sulfuric Acid Mist on Fly Ash in Low-low temperature Flue Gas System

2017 ◽  
Vol 142 ◽  
pp. 3307-3312 ◽  
Author(s):  
Yubo Zhang ◽  
Yu Yan ◽  
Jianhua Liu ◽  
Qingwen Qi ◽  
Lei Deng ◽  
...  
Author(s):  
John M. Preston ◽  
W. Reid Watson ◽  
Charles B. Jones

Modern combustion steam-electric plants are designed to recover as much heat as economically feasible from the combustion products. As a part of the continuing effort by utilities to increase plant efficiency, extracting low quality heat from the flue gas stream prior to discharge through the stack to the environment has become economically attractive. “Economic feasibility” is strongly dependent on the cost of the fuel as well as quality of the heat recovered. The economic feasibility of deploying low-temperature economizers to cool flue gas from coal-fired steam-electric plants to a temperature well below the sulfuric acid mist dew point is not commonly practiced but could have a number of salutary effects on unit operations including reduction in fuel use, reduction in water, reduction in fly ash resistivity upstream of cold-side electrostatic precipitators and enhanced mercury oxidation/capture. Using a theoretical 600 MW (nominal) coal fired facility an additional 30.8 MW of electrical output is available with the installation of a Low Temperature Economizer. This represents a 1% improvement in the plant heat rate with an attractive payback period. The components required for this heat recovery sub-system are readily available and the technology has matured to a point where uncertainties are minimized. In addition to improving the operation of the plant, Low Temperature Economizer can reduce emissions of SOx, NOx, Hg, PM and CO2. In a difficult regulatory environment reducing emissions while increasing plant performance is extremely beneficial. Furthermore Low Temperature Economizer lowers the volume of scrubber water required. Cooling the flue gas leaving the air heater below the acid mist dew point is not commonly practiced. The corrosion potential of the condensed sulfuric acid is a major materials selection/maintenance challenge as is the potential for gas-side fouling of the heat exchange surface with fly ash.


2021 ◽  
pp. 897-909
Author(s):  
Yu Yan ◽  
Jiahao Jiang ◽  
Jin Guo ◽  
Yuesheng Li ◽  
Lei Deng ◽  
...  

2016 ◽  
Vol 92 (3) ◽  
pp. 598-604 ◽  
Author(s):  
Danping Pan ◽  
Linjun Yang ◽  
Hao Wu ◽  
Rongting Huang ◽  
Yaping Zhang

2010 ◽  
Vol 168-170 ◽  
pp. 940-944
Author(s):  
Xiao Dong Wen ◽  
Guo Song Li ◽  
Jiu Yong Song ◽  
Zhi Nan Gao

Depending on the desulfurization reaction temperature,it can be divided into fly ash generated at high-temperature furnace zone and at low-temperature flue gas zone. For simulating those two kinds of desulfurization ash, the ordinary fly ash mixed with different weight percentage of CaSO4•2H2O is divided into 2 groups, the first group is followed by calcining at 900 , another drying at 100 . And then by the experiment of workability, strength and steel rebar protection, the effect of morphology and amount of gypsum on material properties and the pretreatment method are studied. The results show that: compared with ordinary fly ash, those two kinds of desulfurization ash can improve workability, but the improving ability of desulfurization ash at high-temperature furnace zone weaker than another’s, in addition, amount of gypsum in desulfurization ash on fluidity has a threshold; Secondly, desulfurization ash can decrease strength, and the early strength of desulfurization ash at high-temperature furnace zone higher than another’s, but the development trend of later strength is in the opposite direction. Thirdly, those two kinds of desulfurization ash are harmless for steel rebar, and the steel rebar’s passive film compactness is followed desulfurization ash formed at low-temperature flue gas zone>desulfurization ash formed at high-temperature furnace zone>ordinary fly ash.


1975 ◽  
Vol 30 (5) ◽  
pp. 254-262 ◽  
Author(s):  
Yves C. Alarie ◽  
Alexis A. Krumm ◽  
William M. Busey ◽  
Charles E. Ulrich ◽  
Robert J. Kantz

2015 ◽  
Vol 286 ◽  
pp. 517-524 ◽  
Author(s):  
Yuehong Shu ◽  
Xiangyu Wei ◽  
Yu Fang ◽  
Bingyan Lan ◽  
Hongyu Chen

Power Plant ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 48-57
Author(s):  
Redaksi Tim Jurnal

Salah satu unit yang paling penting dalam produksi uap pada PLTU adalah boiler. Salah satu boileh jenis PLTU sering digunakan adalah boiler tipe CFB (Circulating Fluidized Bed), dan jenis bahanbakar batu bara yang digunakan banyak mengandung zat basa. Superheater merupakan salah satu komponen terpenting pada boiler. Superheater berfungsi untuk memanaskan uap agar kandungan energi panas dan kekeringannya bertambah sehingga menjadi uap superheat. Permasalahan yang sering terjadi pada superheater yaitu penumpukan abu (fouling) yang terjadi pada tube superheater tersebut. Unsur yang paling berpengaruh pada fouling adalah material basa terutama kadar Na2O. Bila kadar abu batubara banyak, kemudian unsur basa dalam abu juga banyak, ditambah kadar Na2O yang tinggi, maka fouling akan mudah terjadi. Kadar sulfur yang tinggi cenderung mendorong timbulnya fouling. Fouling dapat menyebabkan penurunan laju perpindahan panas antara flue gas dengan steam pada superheater. Potensi fouling dapat diukur menggunakan suatu persamaan, tetapi persamaan tersebut hanya memperhitungkan chemical composition dari batubara tersebut. Dari penelitian diperoleh hasil terjadi penurunan laju perpindahan panas untuk high temperature superheater dari sootblowing satu ke sootblowing selanjutnya sebesar 511,8458 kW atau sekitar 3,012%. Sedangkan penurunan laju perpindahan panas untuk low temperature superheater dari sootblowing satu ke sootblowing selanjutnya sebesar 3421,506 kW atau sekitar 13,028%. Unsur yang paling berpengaruh pada fouling adalah material basa terutama Na, yang dalam hal ini kadar Na2O. Potensi terjadinya fouling yang dihitung dari data analisis fly ash menunjukkan nilai potensi fouling sebesar 4,0069 yang masuk dalam kategori potensi fouling tinggi pada fly ash lignit.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Prasetiyadi Prasetiyadi ◽  
Wiharja Wiharja ◽  
Sri Wahyono

Proses pembakaran sampah kota melalui insinerator akan menghasilkan uap panas yang bisa dimanfaatkan  untuk membangkitkan energi listrik, akan tetapi pada proses ini juga menghasilkan output berupa flue gas yang didominasi oleh partikel (fly ash) dan gas beracun seperti: HCl, SO2, NOx, HF, Hg, Cd dan Dioxin. Sebelum dibuang ke udara bebas, flue gas tersebut harus diolah agar memenuhi baku mutu lingkungan. Teknologi penanganan partikel dan gas polutan tersedia dan dapat dibuat dengan berbagai kapasitas. Untuk menangani flue gas dari insinerator sampah digunakan Quencher untuk menekan laju pembentukan kembali dioksin dan furan setelah proses pembakaran,  Spray Drying Absorption (SDA) untuk mengikat gas asam dan  logam berat serta bag filter untuk menangkap partikel. Selain itu digunakan ID Fan dan Cerobong Asap untuk pengatasi pressure drop yang terjadi akibat pengoperasian peralatan APC dan melepas ke udara.


Sign in / Sign up

Export Citation Format

Share Document