scholarly journals Impact of Stretch and Heat Loss on Flame Stabilization in a Lean Premixed Flame approaching Blow-off

2018 ◽  
Vol 148 ◽  
pp. 250-257 ◽  
Author(s):  
Pier Carlo Nassini ◽  
Daniele Pampaloni ◽  
Antonio Andreini
2020 ◽  
Vol 45 (18) ◽  
pp. 10906-10919 ◽  
Author(s):  
Shilong Guo ◽  
Jinhua Wang ◽  
Weijie Zhang ◽  
Meng Zhang ◽  
Zuohua Huang

2015 ◽  
Vol 97 (1) ◽  
pp. 263-294 ◽  
Author(s):  
Luis Tay-Wo-Chong ◽  
Mathieu Zellhuber ◽  
Thomas Komarek ◽  
Hong G. Im ◽  
Wolfgang Polifke

2013 ◽  
Vol 35 (6-8) ◽  
pp. 576-582
Author(s):  
Masaharu Komiyama ◽  
Kenichiro Takeishi ◽  
Yohei Fujita ◽  
Kiyonobu Nakayama

Author(s):  
Keita Yunoki ◽  
Tomoya Murota ◽  
Keisuke Miura ◽  
Teruyuki Okazaki

We have developed a burner for the gas turbine combustor, which was high efficiency and low environmental load. This burner is named the “coaxial jet cluster burner” and, as the name indicates, it has multiple fuel nozzles and holes in a coaxial arrangement. To form lean premixed combustion, this burner mixes fuel and air in the multiple holes rapidly. The burner can change the combustion form between premixed and non-premixed combustion by controlling the mixing. However, the combustion field coexisting with premixed and non-premixed combustion is complicated. The phenomena that occur in the combustion field should be understood in detail. Therefore, we have developed the hybrid turbulent combustion (HTC) model to calculate the form in which non-premixed flame coexists with premixed flame. Turbulent flow has been simulated using a large eddy simulation (LES) with a dynamic sub grid scale (SGS) model coupled with the HTC model. These models were programmed to a simulation tool based on the OpenFOAM library. However, there were unclear points about their applicability to an actual machine evaluation and the predictive precision of CO concentration which affects burner performance. In this study, we validate the HTC model by comparing its results with measured gas temperature and gas concentration distributions obtained with a coaxial jet cluster burner test rig under atmospheric pressure. In addition, we analyze the CO generation mechanism for the lean premixed combustion in the burner.


2019 ◽  
Vol 160 ◽  
pp. 113951
Author(s):  
Wenhua Zhao ◽  
Penghua Qiu ◽  
Li Liu ◽  
Wenkai Shen ◽  
Yajin Lyu

Author(s):  
Youichlrou Ohkubo ◽  
Yoshinorl Idota ◽  
Yoshihiro Nomura

Spray characteristics of liquid fuel air-assisted atomizers developed for a lean premixed-prevaporization combustor were evaluated under two kinds of conditions: in still air under non-evaporation conditions at atmospheric pressure and in a prevaporization-premixing tube under evaporation conditions with a running gas turbine. The non-evaporated mass fraction of fuel spray was measured using a phase Doppler particle analyzer in the prevaporization-premixing tube, in which the inlet temperature ranged from 873K to 1173K. The evaporation of the fuel spray in the tube is mainly controlled by its atomization and distribution. The NOx emission characteristics measured with a combustor test rig were evaluated with three-dimensional numerical simulations. A low non-evaporated mass fraction of less than 10% was effective in reducing the exhausted NOx from lean premixed-prevaporization combustion to about 1/6 times smaller than that from lean diffusion (spray) combustion. The flow patterns in the combustor are established by a swirl chamber in fuel-air preparation tube, and affect the flame stabilization of lean combustion.


2018 ◽  
Vol 13 (6) ◽  
pp. 48 ◽  
Author(s):  
Yu Jeong Kim ◽  
Bok Jik Lee ◽  
Hong G. Im

Two-dimensional direct numerical simulations were conducted to investigate the dynamics of lean premixed flames stabilized on a meso-scale bluff-body in hydrogen-air and syngas-air mixtures. To eliminate the flow confinement effect due to the narrow channel, a larger domain size at twenty times the bluff-body dimension was used in the new simulations. Flame/flow dynamics were examined as the mean inflow velocity is incrementally raised until blow-off occurs. As the mean inflow velocity is increased, several distinct modes in the flame shape and fluctuation patterns were observed. In contrast to our previous study with a narrow channel, the onset of local extinction was observed during the asymmetric vortex shedding mode. Consequently, the flame stabilization and blow-off behavior was found to be dictated by the combined effects of the hot product gas pocket entrained into the extinction zone and the ability to auto-ignite the mixture within the given residence time corresponding to the lateral flame fluctuations. A proper time scale analysis is attempted to characterize the flame blow-off mechanism, which turns out to be consistent with the classic theory of Zukoski and Marble.


Sign in / Sign up

Export Citation Format

Share Document