scholarly journals Effect of isopropanol and n-pentanol addition in diesel on the combustion and emission of a common rail diesel engine under pilot plus main injection strategy

2020 ◽  
Vol 6 ◽  
pp. 1734-1747 ◽  
Author(s):  
Hao Chen ◽  
Zhigang Zhou ◽  
Jingjing He ◽  
Peng Zhang ◽  
Xuan Zhao
Author(s):  
Dilunath Hareendranath ◽  
Nilesh Gajarlawar ◽  
Murali Manickam ◽  
Ghodke Pundlik

Main advantages of diesel engine are low fuel consumption coupled with high specific power output. However, benchmark Noise, Vibration and Harshness (NVH) of its counterpart (Gasoline), future stringent emission norms and overall system cost poses tough challenges. In a growing market like India, these benefits of diesel attract the buyer over its counterpart. Diesel engines are known for its heavy visible black smoke. The black smoke formation is more prominent in lower engine speed. This is due to lower injection pressure and the system limitation in conventional injection system and less air availability. Introduction of the common rail injection technology overcomes this difficulty by allowing the injection pressure to build irrespective of the engine speed. However, improving the air flow is a challenge. Generally waste gate turbo chargers are optimized for higher engine speed to match the rated engine performance, but compromising the lower engine speed performance. The use of Variable Geometry turbo charging (VGT), increase in number of valves per cylinder, two stage turbo charging are some of the solutions to this problem but it involves additional cost and fundamental design changes. Hence, it was a challenge to come up with a strategy to overcome this problem without any cost impact. Multiple injection strategy is one of the tools which improve the engine torque without the penalty of smoke. In this paper, a Multi Utility Vehicle (MUV) powered by a 2.5Ldiesel common rail engine, low end performance was effectively improved by this strategy. Current engine has BOSCH 2nd generation common rail system with waste gate Turbocharger. Torque at full load in lower engine speed was improved by introducing the early pilot with relatively higher quantity. However, in the part load, this pilot quantity was split into two successive pilot injections. Selection of pilot separation was optimized in such a way that Noise and Smoke levels are maintained or improved. In part load, improvement in smoke and BSFC was achieved without sacrificing noise level. Engine level trials were conducted with cylinder pressure and Noise Measurement with AVL Indicom. The Concept of Design of experiment (DOE) was used to minimize the number of iteration and for analysis of results. The vehicle performance, pass by noise were found to be improved.


2019 ◽  
pp. 146808741986701 ◽  
Author(s):  
Santiago Molina ◽  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
David Villalta

From the different power plants, the compression ignition diesel engines are considered the best alternative to be used in the transport sector due to its high efficiency. However, the current emission standards impose drastic reductions for the main pollutants, that is, NO x and soot, emitted by this type of engines. To accomplish with these restrictions, alternative combustion concepts as the premixed charge compression ignition are being investigated nowadays. The objective of this work is to evaluate the impact of different fuel injection strategies on the combustion performance and engine-out emissions of the premixed charge compression ignition combustion regime. For that, experimental measurements were carried out in a single-cylinder medium-duty compression ignition diesel engine at low-load operation. Different engine parameters as the injection pattern timing, main injection timing and main injection fuel quantity were sweep. The best injection strategy was determined by means of a methodology based on the evaluation of a merit function. The results suggest that the best injection strategy for the low-load premixed charge compression ignition operating condition investigated implies using a high injection pressure and a triple-injection event with a delayed main injection with almost 15% of the total fuel mass injected.


Author(s):  
D.K. Dond ◽  
N.P. Gulhane

Limited fossil fuel reservoir capacity and pollution caused by them is the big problem in front of researchers. In the present paper, an attempt was made to find a solution to the same. The conventional fuel injection system was retrofitted with a simple version of the common rail direct injection system for the small diesel engine. Further, the effect of injection system parameters was observed on the performance and emission characteristics of the retrofitted common rail direct injection diesel engine. The parameters such as injection pressure, the start of pilot injection timing, the start of main injection timing and quantity of percentage fuel injection during the pilot and main injection period were considered for experimental investigation. It was observed that all the evaluated parameters were found vital for improving the engine’s performance and emission characteristics. The retrofitted common rail direct injection system shows an average 7% rise in brake thermal efficiency with economic, specific fuel consumption. At the same time, much more reduction in hydrocarbon, carbon monoxide and smoke opacity with a penalty of a slight increase in nitrogen oxides.


Sign in / Sign up

Export Citation Format

Share Document