scholarly journals Solar-aided power generation in biomass power plant using direct steam generating parabolic trough collectors

2022 ◽  
Vol 8 ◽  
pp. 641-648
Author(s):  
Somchart Chantasiriwan
Author(s):  
Jan Fabian Feldhoff ◽  
Kai Schmitz ◽  
Markus Eck ◽  
Lars Schnatbaum-Laumann ◽  
Doerte Laing ◽  
...  

Parabolic trough power plants are currently the most commercially applied systems for CSP power generation. To improve their cost-effectiveness, one focus of industry and research is the development of processes with other heat transfer fluids than the currently used synthetic oil. One option is the utilization of water/steam in the solar field, the so-called direct steam generation (DSG). Several previous studies promoted the economic potential of DSG technology [1–3]. Analyses’ results showed that live steam parameters of up to 500°C and 120 bars are most promising and could lead to a reduction of the levelized electricity cost (LEC) of about 11% [4]. However, all of these studies only considered plants without thermal energy storage (TES). Therefore, a system analysis including integrated TES was performed by Flagsol GmbH and DLR together with Solar Millennium AG, Schott CSP GmbH and Senior Bergho¨fer GmbH, all Germany. Two types of plants are analyzed and compared in detail: a power plant with synthetic oil and a DSG power plant. The design of the synthetic oil plant is very similar to the Spanish Andasol plants [5] and includes a molten salt two-tank storage system. The DSG plant has main steam parameters of 500 °C and 112 bars and uses phase change material (PCM) for the latent and molten salt for the sensible part of the TES system. To enable comparability, both plants share the same gross electric turbine capacity of 100 MWel, the same TES capacity of nine hours of full load equivalent and the same solar multiple of the collector field of about two. This paper describes and compares both plants’ design, performance and investment. Based on these results, the LEC are calculated and the DSG plant’s potential is evaluated. One key finding is that with currently proposed DSG storage costs, the LEC of a DSG plant could be higher than those of a synthetic oil plant. When considering a plant without TES on the other hand, the DSG system could reduce the LEC. This underlines the large influence of TES and the still needed effort in the development of a commercial storage system for DSG.


2020 ◽  
Vol 12 (5) ◽  
pp. 1973 ◽  
Author(s):  
Lingling Wang ◽  
Tsunemi Watanabe

Given a lack of consideration for the role and importance of stakeholders and the importance of stakeholders in the operation of biomass power plants in China, a comprehensive analysis oriented toward stakeholder risk management is needed to further develop the country’s biomass energy industry. Accordingly, we analyzed institutional factors that contribute to or constrain progress in biomass power generation in China. Data were collected from 275 straw suppliers (farmers) living around a biomass power plant, 15 middlemen, five power plant managers, and five local government officers. Interviews were held with all the participants, but questionnaires were additionally administered to the straw suppliers. Results showed that: (1) risk transfer in the biomass supply chain is one of the reasons why farmers are unwilling to supply straw; (2) middlemen are vital intermediaries between biomass power plant managers and farmers as a middleman-based biomass supply system is necessary to guarantee the quantity of straw supply, and; (3) the institutional structure that underlies the Chinese biomass energy industry is immature.


2019 ◽  
Vol 11 (12) ◽  
pp. 3426
Author(s):  
Huilu Yu ◽  
Youning Yan ◽  
Suocheng Dong

China’s support policy for renewable electricity belongs to a feed-in tariffs scheme. With the rapid development of renewable electricity industries, this set of policies brought about a heavy fiscal burden for the government. The exploration of whether current support policy provided excessive subsidies for renewable electricity is of great practical significance. We hold an idea that the internalization of positive externality is the only criterion for the government to support the development of a renewable electricity industry. The problem of whether the current policy provides excessive subsidies for renewable electricity industry can be solved by assessing whether its positive externality is internalized, as renewable electricity industry has a characteristic of externality. Our study object is an assumed biomass power plant in Jingning County, Gansu Province. A system dynamics model was built. Applying the environmental cost accounting method and net present value analysis method, we connected the techno-economic analysis of the biomass power plant with the measurement of positive externality of biomass power generation together. In this system dynamics model, we developed an indicator to reveal whether the subsidies provided by governmental policies can compensate the positive externality generated by the assumed biomass power plant. This study mainly draws the following conclusions: Firstly, China’s current support policy does provide excessive subsidies for the renewable power industry. The subsidies received by biomass power plants from the government are higher than the positive externality generated by them; secondly, the positive externality measurement of the biomass power industry is influenced by many regional factors; thirdly, without governmental policy support, biomass power plants cannot compete with traditional power companies; fourthly, as biomass power generation is concerned, the current price subsidy intensity is about US$0.0132 higher per kWh than a reasonable level. Furthermore, the parameters frequently applied in the calculation of the prices of pollutant emission reduction in Chinese research papers are relatively small, which is only half of their actual values. Jingning County, situated in inland west-northern China, lacks typicality. There is a limitation in judging whether the government’s support policy for renewable electricity is reasonable through a feasibility analysis of investment in a biomass power generation project. This may be the main drawback of this study.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 546
Author(s):  
Juanjuan Wu ◽  
Jian Zhang ◽  
Weiming Yi ◽  
Hongzhen Cai ◽  
Yang Li ◽  
...  

The undersupplies of feedstock and high costs have hindered the development of China’s biomass power generation. In this paper, the noncooperative game, farmer–broker cooperative game, and broker–biomass power plant cooperative game, under government incentives, are constructed and analyzed. The optimal decision strategies and profits for these three cases are obtained, while numerical examples and sensitivity analysis are conducted, aiming at illustrating some specific features of the games. It is shown that the government plays a critical role in the development of utilizing agribiomass for power generation and can work better in cooperative games. In addition, both agribiomass supply quantity and profits of supply chain members are higher in cooperative than in noncooperative game. Meanwhile, farmers can get the maximum profit in the broker–biomass power plant cooperative game, while biomass power plant makes the maximum profit in the farmer–broker cooperative game. To guide the healthy development of the industry, there is an urgent need for further exploration of the biomass supply chain management and coordination issue. Specifically, the cooperative game for establishing optimal feedstock price subsidy policy will be done by way of adjusting government incentives and alliance profit distribution.


Sign in / Sign up

Export Citation Format

Share Document