scholarly journals The Development of Straw-Based Biomass Power Generation in Rural Area in Northeast China—An Institutional Analysis Grounded in a Risk Management Perspective

2020 ◽  
Vol 12 (5) ◽  
pp. 1973 ◽  
Author(s):  
Lingling Wang ◽  
Tsunemi Watanabe

Given a lack of consideration for the role and importance of stakeholders and the importance of stakeholders in the operation of biomass power plants in China, a comprehensive analysis oriented toward stakeholder risk management is needed to further develop the country’s biomass energy industry. Accordingly, we analyzed institutional factors that contribute to or constrain progress in biomass power generation in China. Data were collected from 275 straw suppliers (farmers) living around a biomass power plant, 15 middlemen, five power plant managers, and five local government officers. Interviews were held with all the participants, but questionnaires were additionally administered to the straw suppliers. Results showed that: (1) risk transfer in the biomass supply chain is one of the reasons why farmers are unwilling to supply straw; (2) middlemen are vital intermediaries between biomass power plant managers and farmers as a middleman-based biomass supply system is necessary to guarantee the quantity of straw supply, and; (3) the institutional structure that underlies the Chinese biomass energy industry is immature.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3957
Author(s):  
Hui Huang ◽  
Xiaoli Yan ◽  
Shizhong Song ◽  
Yingying Du ◽  
Yanlei Guo

Biomass is the fourth largest energy source in the world; it is easy to store and can be converted into various kinds of renewable energies. The biomass cogeneration system is an important way to utilize biomass energy, especially in northern China. At present, there are many problems in biomass power plants in China, such as high latent heat loss of chimney and cooling towers, low power generation efficiency, and thermal efficiency. In order to solve this problem, this paper introduces low vacuum circulating water heating technology in the biomass cogeneration system, and expounds the differences between China and Western countries in biomass power plants. Based on this background, the technology is redesigned and reformed to make it more suitable for the biomass fuel varieties in the power plant location, and realize the localization of technology and the expansion of scale. The application of this improved technology in China’s biomass cogeneration project is analyzed. Based on the biomass cogeneration project in the DC County of China, the analysis confirms that the designed low vacuum circulating water heating technology is suitable for biomass power generation projects with agricultural and forestry wastes as raw materials, and its application can greatly improve the heat utilization efficiency of the whole cogeneration system. At the same time, in order to estimate the possibility of profitable investment when the key financial parameters change, the financial risk is analyzed. The results show that the probability of 90% net present value (NPV) in 15 years is between 355.28 million RMB and 623.96 million RMB, and the internal rate of return can reach 17.7%.


2018 ◽  
Vol 1 (1) ◽  
pp. 3-14
Author(s):  
Kalyan Bhaskar ◽  
Nikunj Kumar Jain

India is taking several steps to decarbonize electricity as part of the climate change mitigation efforts. One of those steps has been to promote electricity generation from biomass. Past research has focused on risks related to technology, cost, financing, policy, and supply chain in case of biomass power, but there have been limited studies on risks arising due to climate change. Climate change can have major implications for the supply chain of biomass power plants by affecting the underground water availability and land productivity and thereby affecting the availability of biomass for power plants. The effect could be more acute for single-fuel biomass power plants rather than for multi-fuel biomass power plants. Using data from an 8 megawatt (MW) biomass power plant and by developing a conceptual model, this article models risks arising due to climate change and assesses their likely impact on single-fuel biomass power plants. Two key insights emerge from the analysis: (a) A supply chain that is not sustainable and resilient to climate change impacts poses a major risk to the profits of a biomass power plant; and (b) Single-fuel biomass power plants may need to change their businesses and sourcing strategies by either turning into multi-fuel biomass power plant or by increasing the catchment area of their sourcing.


2012 ◽  
Vol 512-515 ◽  
pp. 579-582 ◽  
Author(s):  
Qun Li ◽  
Zhi Xuan Zhang ◽  
Si Ming Liu ◽  
Ji Xin Su

The properties of slag and ash generated from a biomass power plant were analyzed by various characterization methods and the sulfur was tracked. The results showed that the slag and ash contain major elements like Si, S, K and Ca etc and primary substances like SiO2, CaCO3etc. Sulfur is in the form of amorphous soluble salts and insoluble materials in residual carbon.


2020 ◽  
Vol 191 ◽  
pp. 02005
Author(s):  
Suwannee Adsavakulchai ◽  
Udomsak Kaewsiri

The participation of citizens and communities as partners in energy projects are transforming the energy system. Community enterprise initiatives are offering new opportunities for local residence to get actively involved in energy matters. Meanwhile, the worldwide deployment of digital technology in energy sector has become a trending subject of sorts among industry giants as well as the start-up investor community, with applications ranging from grid transactions, financing and transparency in supply chain. This paper reviewed the community biomass power plants sector to comply with the resolution of the National Energy Policy Council, rules and regulations based on a Porter's Diamond model. The results show that such collaborations between local residents and private sector or private sector with state organisation can lead to win-win situations, digitalizing the community biomass power plant by connect all relevant sectors through digital platform and sophisticated innovation in particular Fintech and IT have important potential implications for the implementation of a range of sustainable development and enhancing security and efficiency of the power plant. It is considered to be of great importance in order to enhances competitiveness and will continue to be supported by the government.


Author(s):  
James R. Arcate

Many biomass power plants operating today are small plants characterized by low efficiencies. The average biomass power plant is 20 MW with a biomass-to-electricity efficiency of about 20 percent. Small biomass power plants are also costly to build. Co-firing biomass with coal in existing large, low cost, base load pulverized coal (PC) power plants has been suggested as a cost-effective, near term opportunity for biomass power. However, co-firing of biomass in PC boilers requires addition of a separate biomass feed system. The proposed concept avoids a separate feed system by converting biomass to charcoal for co-firing with coal. Fuel supply reliability would be improved by producing and stockpiling charcoal at dedicated facilities located off the power plant site. With an energy density similar to coal, charcoal could be transported more economically than biomass. Overall costs for co-firing charcoal and coal would be lower than systems co-firing biomass. Investment in Clean Coal Technologies could also be leveraged for biomass energy use by co-firing charcoal with coal in Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluid Bed Combustion (PFBC) power systems.


2013 ◽  
Vol 13 (3) ◽  
pp. 266-276

Environmental, economic and strategic reasons are behind the rapid impulse in the deployment of renewable energy sources that is taking place around the world. In addition to overcoming economic and commercial barriers, meeting the ambitious objectives set by most countries in this field will require the development of novel technologies capable of maximising the energy potential of different renewable sources at an acceptable cost. The use of solar radiation and biomass for power generation is growing rapidly, particularly in areas of the globe where these resources are plentiful, like Mediterranean countries. However, solar energy plants necessarily suffer from the intermittency of day/night cycles and also from reduced irradiation periods (winter, cloudy days, short transients). Biomass power plants have to confront the logistic problems associated with the continuous supply of very large amounts of a relatively scarce and seasonal fuel. Hybrid systems may provide the solution to these limitations, maximising the energy potential of these resources, increasing process efficiency, providing greater security of supply and reducing overall costs. This work provides a practical introduction to the production of electricity from conventional Concentrating Solar Power (CSP) and biomass power plants, which is used as the basis to evaluate the technical and economic benefits associated with hybrid CSP-biomass energy systems. The paper initially analyses alternative configurations for a 10 MWe hybrid CSP- biomass combustion power plant. The Solar Advisor Model (SAM) was used to determine the contribution of the solar field using quasi-steady generation conditions. The contribution of the biomass and gas boiler to the power plant was estimated considering the available radiation throughout the year. An economic assessment of a 10 MWe power plant based on conventional CSP, biomass combustion and hybrid technology is calculated. The results show that investment costs for hybrid CSP- biomass power plants are higher than for conventional CSP and biomass combustion plants alone. However, owing to the shared use of some of the equipment, this value is significantly lower (24% saving) than a simple addition of the investment costs associated with the two standard technologies. In contrast, effective operating hours and, therefore, overall energy generation, are significantly higher than in conventional CSP (2.77 times higher) and avoids the need for highly expensive heat storage system. Owing to the lower biomass requirements, hybrid plants may have larger capacities than standard biomass combustion plants, which implies higher energy efficiencies and a reduced risk associated with biomass supply. Universidad Politécnica de Madrid (UPM) is currently collaborating with a consortium of private companies in the development of a first commercial hybrid CSP-biomass combustion power plant that is expected to start operating in 2012.


2021 ◽  
Vol 4 (1) ◽  
pp. 36-56
Author(s):  
Zefania Praventia Sutrisno ◽  
Attaya Artemis Meiritza ◽  
Anggit Raksajati

Indonesia is currently experiencing a significant increase in population, industrialization and energy demand. As the energy demand increases, so does the production of climate-altering CO2 emission. Biomass power plants have emerged as a low carbon power generation alternative, utilizing agricultural and industrial waste. Biomass power plants have the potential of being a carbon-negative power generation technology in the near future by integrating carbon and capture storage (bio-CCS). The objective of this paper is to analyze and map potential CO2 emission in the processes of biomass power plants from gasification and firing or co-firing technology, then recommend suitable carbon capture technology based on the biomass power plant characteristics in Indonesia. The CO2 emission to be captured in the gasification process is 11-15% of the producer gas, while in co-firing it is 7-24% of the flue gas stream. Using biomass instead of coal in power plants reduces the electric efficiency and increases the plant’s in-house emission, but when analyzed in a wider boundary system it is apparent that the net GWP and CO2 emission of biomass power plants are way smaller than coal power plant, moreover when equipped with carbon capture unit. Biomass power plant that uses firing technology can reduce CO2 emission by 148% compared to typical coal power plant. Installing carbon capture unit in biomass firing power plants can further reduce the specific CO2 emission by 262%. If carbon capture technology is implemented to all existing biomass power plants in Indonesia, it could reduce the greenhouse gas emission up to 2.2 million tonnes CO2 equivalent annually. It is found that there are 3 significant designs for gasification technology: NREL design, Rhodes & Keith design and IGBCC+DeCO2 design. The first two designs are not suitable to be retrofitted into existing biomass power plants in Indonesia since they are based on a specific BCL/FERCO gasifier. While IGBCC+DeCO2 design still needs further study regarding its feasibility. While for firing, the most promising technology to be applied in the near future is solvent-based absorption because it is already on commercial scale for coal-based power plants and can be implemented for other source, e.g. biomass power plant. Bio-CCS in existing biomass power plant with firing technology is likely to be implemented in the near future compared to the gasification, because it applies the post combustion capture as an “end-of-pipe” technology which is generally seen as a more viable option to be retrofitted to existing power plants, resulting in potentially less expensive transition.


2020 ◽  
Vol 3 (1) ◽  
pp. 22
Author(s):  
Giulio Sperandio ◽  
Andrea Acampora ◽  
Vincenzo Civitarese ◽  
Sofia Bajocco ◽  
Marco Bascietto

The delivery of biomass products from the production place to the point of final use is of fundamental importance within the constitution of energy chains based on biomass use as renewable energy source. In fact, transport can be one of the most economically expensive operations of the entire biomass energy production process. In this work, a geographic identification, through remote sensing and photo-interpretation, of the different biomass sources was used to estimate the potential available biomass for energy in a small-scale supply chain. The economic sustainability of transport costs was calculated for different types of biomass sources available close to a biomass power plant of a small-scale energy supply chain, in central Italy. The proposed analysis allows us to highlight and visualize on the map the areas of the territory characterized by greater economic sustainability in terms of lower transport costs of residual agroforestry biomass from the collection point to the final point identified with the biomass power plant. The higher transport cost was around € 40 Mg−1, compared to the lowest of € 12 Mg−1.


Author(s):  
Yong Tian ◽  
Wen-Jing Liu ◽  
Qi-jie Jiang ◽  
Xin-Ying Xu

With the development of biomass power generation technology, biomass waste has a more excellent recycling value. The article establishes a biomass waste inventory model based on the material flow analysis method and predicts raw material waste’s energy utilization potential. The results show that the amount of biomass waste generated from 2016 to 2020 is on the rise. In 2020, biomass waste’s energy utilization can reach 107,802,300 tons, equivalent to 1,955.28PJ of energy. Through biomass energy analysis and emission analysis, the results show that the biomass waste can generate 182.02 billion kW⋅h in 2020, which can replace 35.9% of the region’s total power consumption, which is compared with the traditional power generation method under the same power generation capacity. Power generation can reduce SO2 emissions by 250,400 tons, NOx emissions by 399,300 tons, and PM10 emissions by 49,700 tons. Reduce direct economic losses by 712 million yuan. Therefore, Chinese promotion of the recycling of biomass waste and the acceleration of the biomass energy industry’s development is of great significance for reducing pollutant emissions and alleviating energy pressure.


Sign in / Sign up

Export Citation Format

Share Document