Maize yield and water balance is affected by nitrogen application in a film-mulching ridge–furrow system in a semiarid region of China

2014 ◽  
Vol 52 ◽  
pp. 103-111 ◽  
Author(s):  
Chang-An Liu ◽  
Li-Min Zhou ◽  
Ju-Jie Jia ◽  
Li-Jun Wang ◽  
Jian-Ting Si ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 600 ◽  
Author(s):  
Ming Li ◽  
Kaiping Zhang ◽  
Ibrahim M. Eldoma ◽  
Yanjie Fang ◽  
Feng Zhang

Ridge–furrow cultivation with plastic film mulching has been widely used for many years to increase crop yields in semiarid regions. The long-term effects of plastic mulching on crop yield and soil water balance need to be seriously considered to assess the sustainability of this widely used field management technique. A seven-year maize field experiment was conducted during 2012–2018 to estimate the yield sustainability and soil water balance with two treatments—mulching (yes; no) and nitrogen fertilization (yes; no). This resulted in the following four groups—no film mulching, no N application (M0N0); film mulching, no N application (M1N0); no film mulching, N application (M0N1); film mulching and N application (M1N1). Our results show that plastic mulching significantly increased maize yield. A combination of mulching and nitrogen application had the highest sustainability yield index (SYI) of 0.75, which was higher than the other three treatments, with SYI values of 0.31, 0.33, and 0.39, respectively. Plastic film mulching increased soil water content and water storage in both the sowing and harvesting periods and did not cause the formation of dry soil layers. Precipitation storage efficiency (PSE) in the nongrowing season played a key role in maintaining the soil water balance and it was positively affected by plastic film mulching. Our research indicates that plastic mulching and N application could maintain maize yield sustainability and the soil water balance of agriculture in semiarid regions. In addition, we highlight the importance of nongrowing season precipitation, and thus, we suggest that mulching the field land with plastic film throughout the whole year should be adopted by farmers to store more precipitation, which is important to crop growth.


2018 ◽  
Vol 210 ◽  
pp. 252-260 ◽  
Author(s):  
Qinsi He ◽  
Sien Li ◽  
Shaozhong Kang ◽  
Hanbo Yang ◽  
Shujing Qin

2020 ◽  
Vol 56 (4) ◽  
pp. 620-632
Author(s):  
Alpha Y. Kamara ◽  
Abebe Menkir ◽  
David Chikoye ◽  
Abdullahi I. Tofa ◽  
Aminu A. Fagge ◽  
...  

AbstractStriga hermonthica infestation causes significant losses of maize yield in the Nigerian savannas and several technologies have been developed and promoted to control Striga in maize. However, since no single technology has been found to be effective against Striga, integrated management is needed to achieve satisfactory and sustainable Striga control. Both on-station and on-farm trials were undertaken from 2013 to 2015 in Bauchi and Kano States of Nigeria to evaluate the performance of integrated Striga control technologies. In the on-station trials, a soybean–maize rotation did not suppress Striga in maize in either location. However, nitrogen application suppressed and reduced Striga infection, except in Bauchi in 2014. The soybean–maize rotation accompanied by N application reduced Striga damage in both locations. On farmers’ fields, rotating soybean with maize significantly reduced Striga infection. At the same time, the use of maize varieties with a combined tolerance to drought and resistance to Striga parasitism also increased maize grain yield on farmers’ fields, probably due to three factors: a reduction in Striga infection, reduced effects of a mid-season moisture deficit, and increased uptake of nutrients from the soil. We concluded that the use of Striga-resistant maize varieties in combination with the application of N fertilizer and rotation with soybean could increase the productivity of maize in Striga-infested fields in the Nigerian savannas.


Soil Research ◽  
2019 ◽  
Vol 57 (4) ◽  
pp. 408 ◽  
Author(s):  
Peng Zhang ◽  
Ting Wei ◽  
Zhikuan Jia ◽  
Xiaolong Ren

The soil degradation caused by plastic film mulching tillage in rain-fed areas of north-west China is known to affect sustainable and stable crop yields because of major losses of soil organic carbon (SOC) and nutrients. To evaluate the effects of different plastic film mulching modes on SOC and total nitrogen (STN) sequestration capacity in loessic soil, we investigated the effects of different plastic film mulching on SOC, STN, and the soil C:N ratio in semiarid areas of southern Ningxia for a 4-year period (2013–2016). Five treatments were tested: (i) the control, conventional flat planting without mulching (CK); (ii) alternating mulching and bare rows without ridges and planting in mulched rows (P); (iii) furrow planting of maize, separated by consecutive plastic film-mulched ridges (S); (iv) furrow planting of maize, separated by alternating large and small plastic film-mulched ridges (D); and (v) furrow-flat planting of maize with a large plastic film-mulched ridge alternating with a flat plastic film-mulched space (R). In the final experimental year (2016), the results showed that the mean soil bulk density at 0–60 cm depth had decreased with film mulching treatments by 2.82%, 5.90% (P < 0.05), 7.29% (P < 0.05), and 9.46% (P < 0.05) respectively, compared with CK. Film mulching increased the concentration of SOC and STN, which were ranked in order S > R/D > P > CK; however, there was no significant increase with the storage of SOC and STN. The mean soil C:N ratio was higher with mulching treatment, i.e. 2.91% (P > 0.05) higher than CK in 0–60 cm depth. Mulching treatments significantly (P < 0.05) increased the stratification ratio (SR) of SOC and soil C: N ratio from the surface (0–20 cm) to all depths compared with CK, i.e. the SR of SOC at the 0–20:20–40 cm depth significantly (P < 0.05) increased with D, R, S, and P by 14.81%, 9.47%, 14.18%, and 9.51% respectively, compared with CK.


2020 ◽  
Vol 189 ◽  
pp. 24-35 ◽  
Author(s):  
Meina Zhang ◽  
Jianfeng Zhou ◽  
Kenneth A. Sudduth ◽  
Newell R. Kitchen

1975 ◽  
Vol 11 (4) ◽  
pp. 257-263 ◽  
Author(s):  
D. Thomas ◽  
A. J. Bennett

SUMMARYThe results are reported of an experiment on the Lilongwe Plain to investigate the effects of under-sowing maize with a mixture of Rhodes grass and silverleaf desmodium. Undersowing caused no significant reduction in any component of maize yield, and mixed swards with a good legume content were established. Nitrogen application had no significant effect on yields of grain or pasture, but in the following year undersown swards outyielded those directly seeded. Some practical advantages of undersowing are discussed.


Sign in / Sign up

Export Citation Format

Share Document