Simulation of water balance in a maize field under film-mulching drip irrigation

2018 ◽  
Vol 210 ◽  
pp. 252-260 ◽  
Author(s):  
Qinsi He ◽  
Sien Li ◽  
Shaozhong Kang ◽  
Hanbo Yang ◽  
Shujing Qin
Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3289
Author(s):  
Rongchao Shi ◽  
Ling Tong ◽  
Taisheng Du ◽  
Manoj K. Shukla

Research is imperative to predict seed vigor of hybrid maize production under water deficit in arid areas. Field experiments were conducted in 2018 and 2019 in arid areas of northwestern China to investigate the effects of different irrigation strategies at various growth stages with drip irrigation under film mulching on grain yield, kernel weight, seed protein content, and seed vigor of hybrid maize (Zea mays L.). Water deficit at vegetative, flowering, and grain-filling stages was considered and a total of 16 irrigation treatments was applied. A total of 12 indices of germination percentage, germination index (GI), shoot length (SL), and root length (RL) under different germination conditions (standard germination and accelerated aging); electrical conductivity (EC) of the leachate; and activities of peroxidase, catalase, and superoxide dismutase in seeds were measured and analyzed using the combinational evaluation method (CEM). Furthermore, five water production functions (Blank, Stewart, Rao, Jensen, and Minhas) were used to predict seed vigor evaluated by CEM under water deficit. The results showed that leachate EC was higher under water deficit than that under sufficient irrigation. The SL, RL, and GI of different germination conditions increased under water deficit at the flowering stage. The Rao model was considered the best fitted model to predict the vigor of hybrid maize seeds under water deficit, and an appropriate water deficit at the flowering stage is recommended to ensure high seed vigor of hybrid maize production with drip irrigation under film mulching. Our findings would be useful for reducing crop water use while ensuring seed vigor for hybrid maize production in arid areas.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 600 ◽  
Author(s):  
Ming Li ◽  
Kaiping Zhang ◽  
Ibrahim M. Eldoma ◽  
Yanjie Fang ◽  
Feng Zhang

Ridge–furrow cultivation with plastic film mulching has been widely used for many years to increase crop yields in semiarid regions. The long-term effects of plastic mulching on crop yield and soil water balance need to be seriously considered to assess the sustainability of this widely used field management technique. A seven-year maize field experiment was conducted during 2012–2018 to estimate the yield sustainability and soil water balance with two treatments—mulching (yes; no) and nitrogen fertilization (yes; no). This resulted in the following four groups—no film mulching, no N application (M0N0); film mulching, no N application (M1N0); no film mulching, N application (M0N1); film mulching and N application (M1N1). Our results show that plastic mulching significantly increased maize yield. A combination of mulching and nitrogen application had the highest sustainability yield index (SYI) of 0.75, which was higher than the other three treatments, with SYI values of 0.31, 0.33, and 0.39, respectively. Plastic film mulching increased soil water content and water storage in both the sowing and harvesting periods and did not cause the formation of dry soil layers. Precipitation storage efficiency (PSE) in the nongrowing season played a key role in maintaining the soil water balance and it was positively affected by plastic film mulching. Our research indicates that plastic mulching and N application could maintain maize yield sustainability and the soil water balance of agriculture in semiarid regions. In addition, we highlight the importance of nongrowing season precipitation, and thus, we suggest that mulching the field land with plastic film throughout the whole year should be adopted by farmers to store more precipitation, which is important to crop growth.


2020 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Cristina Puertes ◽  
Manuel Pulido-Velázquez ◽  
...  

<p>Irrigation modernization, here defined as the replacement of traditional flood irrigation systems by pressurized drip-irrigation technology, has been widely promoted with the aim to move towards a more sustainable use of freshwater resources in irrigated agriculture. However, the scale sensitivity of irrigation efficiency challenged the predominantly positive value attributed to irrigation modernization and asked for an integrated evaluation of the technological change at various scales. The aim of this study is therefore to contribute to an improved understanding of the hydrological functioning in a landscape under irrigation modernization. We used local field observations to propose a regional scale modeling approach that allowed to specifically simulate the difference in water balance as a function of irrigation method and crop type. The approach focused on the modification of the spatial input data and had therefore the benefit of being relatively independent of the final choice of the hydrological model. We applied the proposed approach to the semi-arid agricultural area of Valencia (Spain), where regional information about the use of irrigation technologies and irrigation volumes at farm level were available. The distributed hydrological model Tetis was chosen to simulate the daily water balance from 1994 to 2015 for an area of 913 km<sup>2</sup> at a spatial resolution of 200 m. Model simulations were based on a random selection of parameter values that were subsequently evaluated in a multi-objective calibration framework. Multiple process scales were addressed within the framework by considering the annual evaporative index, monthly groundwater level dynamics, and daily soil moisture dynamics for evaluation. Simulation results were finally analyzed with a focus on groundwater recharge, which is of particular interest for environmental challenges faced within the study area. Simulation results of groundwater recharge for the entire agricultural area indicated a considerable variability in annual recharge (values from 112 mm up to 337 mm), whereby recharge was strongly controlled by annual rainfall volumes. Annual recharge in flood-irrigated areas tended to exceed annual recharge in drip irrigated-areas except for years with above average rainfall volumes. The observed rainfall dependency could be explained by the fact that recharge in drip-irrigated areas almost exclusively occurred during rainy days, whereby a few heavy rainfall events could produce the majority of annual recharge. Our results indicated interesting differences but also commonalities in groundwater recharge for flood and drip irrigation, and therefore emphasized the importance of explicitly considering irrigation technology when modelling irrigated agricultural areas.</p>


2014 ◽  
Vol 52 ◽  
pp. 103-111 ◽  
Author(s):  
Chang-An Liu ◽  
Li-Min Zhou ◽  
Ju-Jie Jia ◽  
Li-Jun Wang ◽  
Jian-Ting Si ◽  
...  

2012 ◽  
Vol 113 ◽  
pp. 30-37 ◽  
Author(s):  
T. Sammis ◽  
P. Sharma ◽  
M.K. Shukla ◽  
J. Wang ◽  
D. Miller

2013 ◽  
Vol 152 (4) ◽  
pp. 534-542 ◽  
Author(s):  
Z. LI ◽  
R. ZHANG ◽  
X. WANG ◽  
F. CHEN ◽  
D. LAI ◽  
...  

SUMMARYTo evaluate the effects of a modern cultivation system of plastic film mulching with drip irrigation (MD) on soil greenhouse gas fluxes, methane (CH4) and nitrous oxide (N2O) fluxes were quantified and contrasted in an MD system and a traditional system of mulch-free flood-irrigated (MFF) cotton (Gossypium hirsutum L.) in fields of northwest China. The results showed that soil N2O flux and the absorption rate of CH4 were lower in the MD than the MFF sites. A possible reason for the higher CH4 emissions at MD sites was that the relatively low gaseous oxygen (O2) availability and high ammonium (NH4+) content in the MD soil increased CH4 generation by methanogens and decreased CH4 oxidation by methanotrophs. The lower N2O in the MD sites may be due to an increase of soil denitrification by Thiobacillus denitrificans that reduced some nitrous compounds further into nitrogen gas (N2). Taking into account the global warming potentials of CH4 and N2O in a 100-year time horizon, during the entire growth period, the contribution of CH4 to the greenhouse effect was significantly lower than N2O in these two treatments. Considering these two greenhouse gas fluxes together, a transition from non-mulching cultivation to mulching cultivation could reduce atmospheric emissions by c. 20 g CO2 e m2/season. Based on these findings and previous studies, it can be concluded that mulched-drip irrigation cultivation is a good way to decrease the emission of greenhouse gases and reduce the global warming impact of arid farmlands.


Sign in / Sign up

Export Citation Format

Share Document