Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: durum wheat, sunflower and maize grain yield

2016 ◽  
Vol 77 ◽  
pp. 166-178 ◽  
Author(s):  
Giovanna Seddaiu ◽  
Ileana Iocola ◽  
Roberta Farina ◽  
Roberto Orsini ◽  
Giuseppe Iezzi ◽  
...  
2011 ◽  
Vol 31 (4) ◽  
pp. 657-673 ◽  
Author(s):  
Leonard Rusinamhodzi ◽  
Marc Corbeels ◽  
Mark T. van Wijk ◽  
Mariana C. Rufino ◽  
Justice Nyamangara ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 302 ◽  
Author(s):  
Peng Ning ◽  
Yunfeng Peng ◽  
Felix Fritschi

Maize grain yield is considered to be highly associated with ear and leaf carbohydrate dynamics during the critical period bracketing silking and during the fast grain filling phase. However, a full understanding of how differences in N availability/plant N status influence carbohydrate dynamics and processes underlying yield formation remains elusive. Two field experiments were conducted to examine maize ear development, grain yield and the dynamics of carbohydrates in maize ear leaves and developing ears in response to differences in N availability. Increasing N availability stimulated ear growth during the critical two weeks bracketing silking and during the fast grain-filling phase, consequently resulting in greater maize grain yield. In ear leaves, sucrose and starch concentrations exhibited an obvious diurnal pattern at both silking and 20 days after silking, and N fertilization led to more carbon flux to sucrose biosynthesis than to starch accumulation. The elevated transcript abundance of key genes involved in starch biosynthesis and maltose export, as well as the sugar transporters (SWEETs) important for phloem loading, indicated greater starch turnover and sucrose export from leaves under N-fertilized conditions. In developing ears, N fertilization likely enhanced the cleavage of sucrose to glucose and fructose in the cob prior to and at silking and the synthesis from glucose and fructose to sucrose in the kernels after silking, and thus increasing kernel setting and filling. At the end, we propose a source-sink carbon partitioning framework to illustrates how N application influences carbon assimilation in leaves, transport, and conversions in developing reproductive tissues, ultimately leading to greater yield.


2008 ◽  
Vol 147 (1) ◽  
pp. 31-42 ◽  
Author(s):  
H. ZHANG ◽  
M. XU ◽  
F. ZHANG

SUMMARYRice (Oryza sativaL.), wheat (Triticum aestivumL.) and maize (Zea maysL.) are the main crops grown in China. Applying organic manures is an important practice in sustaining soil fertility and agricultural productivity in these cropping systems. The current paper presents the effects of manure application on grain yields in nine long-term experiments that consist of one continuous maize, four wheat–maize and four rice-based cropping systems across a wide range of agro-ecological regions in China. The study shows that regular manure application can increase soil organic carbon (SOC) and grain yield across all the sites. Overall, regular use of manure results in larger increases in SOC in the maize and wheat–maize systems than in the rice-based systems. Application of manure tends to increase the grain yield in the maize and wheat–maize systems during the final years, but increases the grain yield in the rice-based systems during the initial years of the long-term experiments. There is only one site that shows significant improvement in the yield trend in association with the application of manure. The effects of manure on yield trends are probably determined by the initial yield and/or the ‘organic C effect’ that may cause gradual improvements in SOC and soil physical properties.


1999 ◽  
Vol 35 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D. P. Sherchan ◽  
C. J. Pilbeam ◽  
P. J. Gregory

Farmers in the mid-hills of Nepal have a mix of rainfed land on which millet is grown in relay after maize (maize/millet), and irrigated land on which wheat is grown sequentially after rice (wheat–rice). Double cropping is the norm but the diminishing quantities of organic materials, coupled with the trend towards increased use of inorganic fertilizers, have raised questions about the long-term productivity and sustainability of the cropping systems. The aim of this work was to examine the long-term effects (eight years) on grain yield of additions of manure and fertilizer either singly or in combination. Maize/millet and wheat–rice rotations were established on a Dystochrept at Pakhribas Agricultural Centre at about 1450 m altitude. Manure and fertilizer applications were applied to the maize (eight combinations in May) and the wheat (different rates in seven combinations in November) every year with the succeeding crops (millet and rice) utilizing residual nutrients. Yields of maize, millet and rice were greater when manure rather than fertilizer was applied but yields of wheat were less. The combined application of manure and fertilizer significantly increased yields of maize and wheat compared with applications of either manure or fertilizer alone. However, for the subsequent crops (millet and rice) there was either a small residual benefit of the combined application when compared with fertilizer alone, or no benefit when compared with manure alone. Overall, the combined application increased total grain yields by about 35% in the maize/millet rotation and by 16% in the wheat–rice rotation. There was no trend in yields in response to treatment with time.


2014 ◽  
Vol 2 (2) ◽  
pp. 89-93 ◽  
Author(s):  
B Ita ◽  
E Ariga ◽  
R Michieka ◽  
W Muiru

Weed management practices used by small scale farmers determine maize productivity. The trials were executed in Kigumo district during the long and short rains in 2010 to compare effectiveness of glyphosate and hand weeding on weed management in maize (Zea mays L.). Treatments were arranged in a Completely Randomized Complete Block Design replicated three times in a split plot arrangement. The main plots were two maize varieties DUMA SC 41 and DK 8031 and the subplots three weed management practices,(glyphosate, hand weeding and no tillage). Data collected included weed count by species,fresh and dry weed biomass and maize grain yield. Data was subjected to ANOVA using Genstat computer software package at P<0.05. Treatments means were separated by Student-Newman Keuls Test. Results revealed that there were significant differences in weed count among weed management practices (P < 0.05). Weeds, significantly established faster under hand weeding than other weed management practices. There were no significant differences among weed management practices in biomass and maize grain yield (P < 0.05). The two maize varieties significantly differed in grain yield under different weed management practices, DK 8031 under glyphosate had the highest yield among the tillage practices involved.


2010 ◽  
Vol 106 (2) ◽  
pp. 227-240 ◽  
Author(s):  
Christopher R. Boomsma ◽  
Judith B. Santini ◽  
Terry D. West ◽  
Jason C. Brewer ◽  
Lauren M. McIntyre ◽  
...  

Author(s):  
Raghavendra Singh ◽  
Subhash Babu ◽  
R.K. Avasthe ◽  
Gulab Singh Yadav ◽  
Anup Das ◽  
...  

Organic farming has positive, impact on environment, soil health, and healthy food quality. Worldwide demand for organic foods is increasing by leaps and bounds in recent years. The present investigation was undertaken during 2014 to 2018 to evaluate the effect of cowpea (Vigna unguiculata) co-culture with maize (Zea mays L.) on productivity enhancement over prevailing maize-fallow system, and to assess the feasibility of inclusion of short duration winter crops after maize with appropriate residue management practices on productivity and soil health. The experiment comprised of six cropping systems in main plot and three soil moisture conservation (SMC) measures options in sub plot. Results indicated that the inclusion of second crop in place of fallow and cowpea co-culture with maize increased average maize grain yield by 6.2 to 23.5% as compared to that of maize-fallow (MF). Use of maize stover mulch (MSM) + weed biomass mulch (WBM) increases maize grain yield by 19.1 and 6.5% over those of MSM and no mulch (NM), respectively. Various soil moisture conservation (SMC) measures had significant (p=0.05) effect on crop yields and water productivity. Double cropping system had significantly (p=0.05) higher amount of soil available NPK, soil organic carbon (SOC), microbial biomass carbon (MBC) and dehydrogenase activity (DHA) at 0-15 cm and at 15-30 cm depth than those under MF. The SWC measures of MSM+WBM had significantly higher available N, SOC, and MBC by 5.5, 4.8 and 8.1% than those under NM, respectively. Correspondingly, soils under MSM and MSM+WBM had 2.24 and 2.99% lower bulk density (&rho;b) in 0-15 cm and 2.21 and 2.94% lower &rho;b in 15-30 cm than that of NM. The energy use efficiency (EUE) was significantly higher under MCV (7.90%) over rest of the cropping sequences. MSM+WBM and MSM recorded 25.1 and 16.6% higher net energy over NM, respectively. The net return (INR 159.99&times;103/ha) and B:C ratio (2.86) were significantly higher with MCV system followed by MCR cropping sequence. MSM+WBM had significantly higher net return (INR 109.44&times;103/h), B:C ratio (2.46) over those under MSM (INR 97.6&times;103/h) and NM (INR 78.61&times;103/h). Overall the cowpea co-culture with maize and inclusion of short cycle winter crops along with MSM+WBM in maize-based cropping systems was found productive in terms of crop and water, profitable, energy efficient and sustained the soil health.


Sign in / Sign up

Export Citation Format

Share Document