scholarly journals Can Cowpea Intercropped Maize-Based System with Inclusion of Short Cycle Winter Crop through Soil Moisture Conservation Practices Enhance Crop, Water, Energy Productivity and Soil Health under Long Term Organic Management?

Author(s):  
Raghavendra Singh ◽  
Subhash Babu ◽  
R.K. Avasthe ◽  
Gulab Singh Yadav ◽  
Anup Das ◽  
...  

Organic farming has positive, impact on environment, soil health, and healthy food quality. Worldwide demand for organic foods is increasing by leaps and bounds in recent years. The present investigation was undertaken during 2014 to 2018 to evaluate the effect of cowpea (Vigna unguiculata) co-culture with maize (Zea mays L.) on productivity enhancement over prevailing maize-fallow system, and to assess the feasibility of inclusion of short duration winter crops after maize with appropriate residue management practices on productivity and soil health. The experiment comprised of six cropping systems in main plot and three soil moisture conservation (SMC) measures options in sub plot. Results indicated that the inclusion of second crop in place of fallow and cowpea co-culture with maize increased average maize grain yield by 6.2 to 23.5% as compared to that of maize-fallow (MF). Use of maize stover mulch (MSM) + weed biomass mulch (WBM) increases maize grain yield by 19.1 and 6.5% over those of MSM and no mulch (NM), respectively. Various soil moisture conservation (SMC) measures had significant (p=0.05) effect on crop yields and water productivity. Double cropping system had significantly (p=0.05) higher amount of soil available NPK, soil organic carbon (SOC), microbial biomass carbon (MBC) and dehydrogenase activity (DHA) at 0-15 cm and at 15-30 cm depth than those under MF. The SWC measures of MSM+WBM had significantly higher available N, SOC, and MBC by 5.5, 4.8 and 8.1% than those under NM, respectively. Correspondingly, soils under MSM and MSM+WBM had 2.24 and 2.99% lower bulk density (ρb) in 0-15 cm and 2.21 and 2.94% lower ρb in 15-30 cm than that of NM. The energy use efficiency (EUE) was significantly higher under MCV (7.90%) over rest of the cropping sequences. MSM+WBM and MSM recorded 25.1 and 16.6% higher net energy over NM, respectively. The net return (INR 159.99×103/ha) and B:C ratio (2.86) were significantly higher with MCV system followed by MCR cropping sequence. MSM+WBM had significantly higher net return (INR 109.44×103/h), B:C ratio (2.46) over those under MSM (INR 97.6×103/h) and NM (INR 78.61×103/h). Overall the cowpea co-culture with maize and inclusion of short cycle winter crops along with MSM+WBM in maize-based cropping systems was found productive in terms of crop and water, profitable, energy efficient and sustained the soil health.

2016 ◽  
Vol 77 ◽  
pp. 166-178 ◽  
Author(s):  
Giovanna Seddaiu ◽  
Ileana Iocola ◽  
Roberta Farina ◽  
Roberto Orsini ◽  
Giuseppe Iezzi ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129231 ◽  
Author(s):  
Xinbing Wang ◽  
Baoyuan Zhou ◽  
Xuefang Sun ◽  
Yang Yue ◽  
Wei Ma ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1778
Author(s):  
Dongping Shen ◽  
Guoqiang Zhang ◽  
Ruizhi Xie ◽  
Bo Ming ◽  
Peng Hou ◽  
...  

High yield is one of the important goals of crop production, and close planting and optimum irrigation systems are important agronomic practices for increasing maize (Zea mays L.) grain yield. However, little is known about the effect of optimal irrigation interval on the photosynthetic rate (Pn) and dry matter accumulation (DM) of closely planted super-high-yield maize under drip irrigation under mulch. Therefore, the objective of this study was to determine the effects of irrigation interval on the leaf Pn, DM, and grain yield of closely planted super-high-yield maize under mulch drip irrigation in the Xinjiang Uygur Autonomous Region, Northwestern China. A field experiment was conducted using three irrigation intervals in 2016—namely, six days (D6), nine days (D9), and 12 days (D12)—and five irrigation intervals in 2017—namely, three days (D3), six days (D6), nine days (D9), 12 days (D12), and 15 days (D15). The Xianyu 335 high-yield maize hybrid was used in the test; the planting density was set to 12×104 plants ha−1, and an optimal irrigation quota of 540 mm was used. The results showed that during the irrigation period, (1) the soil moisture content (SMC), DM, leaf Pn, and grain yield of treatment D6 were higher than for other irrigation intervals, (2) the leaf Pn and stomatal conductance (GS) of the leaves of treatments D3, D9, D12, and D15 were significantly correlated with the SMC of the 0–40 cm soil layer, and (3) the leaf Pn of treatment D6 was significantly positively correlated with SMC in the 0–60 cm soil layer but not significantly correlated with GS. Irrigation treatment D6 was found to maintain high SMC, provide a water environment favorable to the growth of maize, and increase the leaf Pn and DM, and thereby obtain maize grain yield (20.6–21.0 t ha−1). Therefore, an optimal irrigation interval could be beneficial for adjusting soil moisture, leaf Pn, and DM in order to increase maize grain yield with drip irrigation under mulch.


2002 ◽  
Vol 38 (3) ◽  
pp. 253-264 ◽  
Author(s):  
A. Larbi ◽  
J. W. Smith ◽  
I. O. Adekunle ◽  
W. A. Agyare ◽  
L. D. Gbaraneh ◽  
...  

A study was conducted in the humid-forest, forest-savanna, and Guinea savanna zones of West Africa from 1993 to 1999 to examine the effect of managing crop residues from cereal–legume cropping systems for mulch and fodder for sheep. Increasing the proportion of total crop residues produced from a unit area of land and used as mulch increased maize grain yield, soil organic carbon, nitrogen and available phosphorus. The extra increases obtained when more than half the crop residues were applied as mulch were relatively small, however, suggesting that 25–50% of the crop residues could be removed as feed without any detrimental effect. When any crop residues rejected by sheep were mixed with livestock urine and faeces and returned to the respective fields from where the crop residues had been removed, subsequent grain yield and soil organic carbon, nitrogen, and available phosphorus increased. The study demonstrated the possibility of managing crop residues for increased productivity in smallholder mixed crop–livestock systems.


2006 ◽  
Vol 54 (4) ◽  
pp. 425-430
Author(s):  
T. Árendás ◽  
L. C. Marton ◽  
P. Bónis ◽  
Z. Berzsenyi

The effect of varying weather conditions on the moisture content of the maize grain yield was investigated in Martonvásár, Hungary from late August to late September, and from the 3rd third of September to the 1st third of Novemberbetween 1999 and 2002. In every year a close positive correlation (P=0.1%) could be observed between the moisture content in late September and the rate of drying down in October. Linear regression was used each year to determine the equilibrium moisture content, to which the moisture content of kernels returned if they contained less than this quantity of water in late September and harvesting was delayed. In the experimental years this value ranged from 15.24-19.01%.


2018 ◽  
Vol 44 (2) ◽  
pp. 268
Author(s):  
Jun-Hong XIE ◽  
Ling-Ling LI ◽  
Ren-Zhi ZHANG ◽  
Qiang CHAI

2011 ◽  
Vol 37 (1) ◽  
pp. 152-157 ◽  
Author(s):  
You-Liang YE ◽  
Yu-Fang HUANG ◽  
Chun-Sheng LIU ◽  
Ri-Tao QU ◽  
Hai-Yan SONG ◽  
...  

Crop Science ◽  
1992 ◽  
Vol 32 (3) ◽  
pp. 718-722 ◽  
Author(s):  
E. Martínez‐Barajas ◽  
C. Villanueva‐Verduzco ◽  
J. Molina‐Galán ◽  
H. Loza‐Tavera ◽  
E. Sánchez‐de‐Jiménez

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil ◽  
Ahmed M. Shaalan

The sequence of the preceding crops in a no-tillage farming system, could interact with the integrated use of mineral and organic nitrogen (N) sources in a way that improves the growth and productivity of the terminal maize crop, meanwhile, enhancing its N use efficiency (NUE). In the current study, six legume-cereal crop sequences, including faba bean, soybean, Egyptian clover, wheat, and maize were evaluated along two experimental rotations that ended up by planting the terminal maize crop. In addition, the effects of applying variable mineral nitrogen (MN) rates with and without the incorporation of farmyard manure (FYM) on the productive performance of maize and its NUE were tested. The field experiments were conducted in a no-tillage irrigated farming system in Northern Egypt, a location that is characterized by its arid, Mediterranean climate. Results revealed that increasing the legume component in the evaluated crop sequences, up to 75%, resulted in improved maize ear leaf area, 1000-grain weight, and harvest index, thus, a higher final grain yield, with the inclusion of Egyptian clover was slightly better than faba bean. Comparing the crop sequences with 50% legume contribution uncovered the positive effects of soybean preceding crop on the terminal maize crop. Substituting 25% of the applied MN with FYM resulted in similar maize yields to the application of the equivalent 100% MN rates. The fertilizer treatments significantly interacted with the crop sequences in determining the maize grain yield, where the highest legume crop contribution in the crop sequence (75%) equalized the effects of the different fertilizer treatments on maize grain yield. The integrated use of FYM with MN in maize fertilization improved the NUE compared to the application of MN alone. Comparing fertilization treatments with similar MN content, with and without FYM, revealed that the difference in NUE was attributed to the additional amount of FYM. In similar conditions to the current study, it is recommended to grow faba bean two years before maize, while Egyptian clover could be grown directly preceding maize growth, with frequent inclusion of soybean in the sequence, this could be combined with the application of an average of 200 kg MN ha−1 in addition to FYM.


Sign in / Sign up

Export Citation Format

Share Document