RESPONSE OF WHEAT–RICE AND MAIZE/MILLET SYSTEMS TO FERTILIZER AND MANURE APPLICATIONS IN THE MID-HILLS OF NEPAL

1999 ◽  
Vol 35 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D. P. Sherchan ◽  
C. J. Pilbeam ◽  
P. J. Gregory

Farmers in the mid-hills of Nepal have a mix of rainfed land on which millet is grown in relay after maize (maize/millet), and irrigated land on which wheat is grown sequentially after rice (wheat–rice). Double cropping is the norm but the diminishing quantities of organic materials, coupled with the trend towards increased use of inorganic fertilizers, have raised questions about the long-term productivity and sustainability of the cropping systems. The aim of this work was to examine the long-term effects (eight years) on grain yield of additions of manure and fertilizer either singly or in combination. Maize/millet and wheat–rice rotations were established on a Dystochrept at Pakhribas Agricultural Centre at about 1450 m altitude. Manure and fertilizer applications were applied to the maize (eight combinations in May) and the wheat (different rates in seven combinations in November) every year with the succeeding crops (millet and rice) utilizing residual nutrients. Yields of maize, millet and rice were greater when manure rather than fertilizer was applied but yields of wheat were less. The combined application of manure and fertilizer significantly increased yields of maize and wheat compared with applications of either manure or fertilizer alone. However, for the subsequent crops (millet and rice) there was either a small residual benefit of the combined application when compared with fertilizer alone, or no benefit when compared with manure alone. Overall, the combined application increased total grain yields by about 35% in the maize/millet rotation and by 16% in the wheat–rice rotation. There was no trend in yields in response to treatment with time.

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1213 ◽  
Author(s):  
Geoffrey C. Anderson ◽  
Shahab Pathan ◽  
James Easton ◽  
David J. M. Hall ◽  
Rajesh Sharma

Surface (0–10 cm) and subsoil (soil layers below 10 cm) acidity and resulting aluminum (Al) toxicity reduce crop grain yields. In South Western Australia (SWA), these constraints affect 14.2 million hectares or 53% of the agricultural area. Both lime (L, CaCO3) and gypsum (G, CaSO4) application can decrease the toxic effect of Al, leading to an increase in crop grain yields. Within the region, it is unclear if G alone or the combined use of L and G has a role in alleviating soil acidity in SWA, due to low sulfate S (SO4–S) sorption properties of the soil. We present results from three experiments located in the eastern wheatbelt of SWA, which examined the short-term (ST, 2 growing seasons), medium-term (MT, 3 growing seasons), and long-term (LT, 7 growing seasons over 10 years) effects of L and G on grain yield and plant nutrient concentrations. Despite the rapid leaching of SO4–S and no self-liming impact, it was profitable to apply G, due to the significant ST grain yield responses. The grain yield response to G developed even following relatively dry years, but declined over time due to SO4–S leaching. At the LT experimental site had received no previous L application, whereas, at the ST and MT sites, L had been applied by the grower over the previous 5–10 years. For the LT site, the most profitable treatment for wheat (Triticum aestivum L.) grain yield, was the combined application of 4 t L ha−1 with 2 t G ha−1. At this site, the 0–10 cm soil pHCaCl2 was 4.6, and AlCaCl2 was greater than 2.5 mg kg−1 in the 10–30 cm soil layer. In contrast, at the ST and MT sites, the pHCaCl2 of 0–10 cm soil layer was ≥5.5; it was only profitable to apply G to the MT site where the soil compaction constraint had been removed by deep ripping. The use of L increases soil pHCaCl2, resulting in the improved availability of anions, phosphorus (P) in the LT and molybdenum (Mo) at all sampling times, but reduced availability of cations zinc (Zn) in the LT and manganese (Mn) at all sampling. The application of G reduced Mo concentrations, due to the high SO4–S content of the soil.


2008 ◽  
Vol 147 (1) ◽  
pp. 31-42 ◽  
Author(s):  
H. ZHANG ◽  
M. XU ◽  
F. ZHANG

SUMMARYRice (Oryza sativaL.), wheat (Triticum aestivumL.) and maize (Zea maysL.) are the main crops grown in China. Applying organic manures is an important practice in sustaining soil fertility and agricultural productivity in these cropping systems. The current paper presents the effects of manure application on grain yields in nine long-term experiments that consist of one continuous maize, four wheat–maize and four rice-based cropping systems across a wide range of agro-ecological regions in China. The study shows that regular manure application can increase soil organic carbon (SOC) and grain yield across all the sites. Overall, regular use of manure results in larger increases in SOC in the maize and wheat–maize systems than in the rice-based systems. Application of manure tends to increase the grain yield in the maize and wheat–maize systems during the final years, but increases the grain yield in the rice-based systems during the initial years of the long-term experiments. There is only one site that shows significant improvement in the yield trend in association with the application of manure. The effects of manure on yield trends are probably determined by the initial yield and/or the ‘organic C effect’ that may cause gradual improvements in SOC and soil physical properties.


2016 ◽  
Vol 77 ◽  
pp. 166-178 ◽  
Author(s):  
Giovanna Seddaiu ◽  
Ileana Iocola ◽  
Roberta Farina ◽  
Roberto Orsini ◽  
Giuseppe Iezzi ◽  
...  

2016 ◽  
Vol 108 (4) ◽  
pp. 1703-1716 ◽  
Author(s):  
Wenkui Zheng ◽  
Changling Sui ◽  
Zhiguang Liu ◽  
Jibiao Geng ◽  
Xiaofei Tian ◽  
...  

2016 ◽  
Vol 51 (9) ◽  
pp. 1633-1642 ◽  
Author(s):  
Claudio Hideo Martins da Costa ◽  
Carlos Alexandre Costa Crusciol ◽  
Jayme Ferrari Neto ◽  
Gustavo Spadotti Amaral Castro

Abstract The objective of this work was to evaluate the long-term effects of the surface application of lime on soil fertility and on the mineral nutrition and grain yield of soybean, and of black oat and sorghum in crop succession. The experiment was carried out on a clayey Oxisol, in a randomized complete block design, with four replicates. Treatments consisted of lime the rates of 0, 1,000, 2,000, and 4,000 kg ha-1, applied in October 2002 and November 2004. Soil samples were collected at five soil layers, down to 0.60-m depth. Surface liming was effective in reducing soil acidity and increasing Ca2+ and Mg2+ contents in the subsurface. Moreover, it increased available phosphorus contents and soil organic matter in the long term (48 to 60 months after the last lime application). Surface liming improved plant nutrition, mainly for N, Ca, and Mg, and increased dry matter production and grain yield of the crops, even in years with regular distribution of rainfall. The greatest productivities of soybean, black oat, and sorghum were obtained with the respective estimated lime doses of 4,000, 2,333, and 3,281 kg ha-1, for shoot dry matter, and of 2,550, 3,555, and over 4,000 kg ha-1, for grain yield.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2429
Author(s):  
Xiaoru Fan ◽  
Zekai Chen ◽  
Zihan Niu ◽  
Ruiyao Zeng ◽  
Jingmin Ou ◽  
...  

Synthetic nitrogen fertilizer substitution (NSS) with different types of organic material is a cleaner agricultural practice for reducing the application of synthetic N input in farmlands while also relieving the environmental issues caused by the discharge of organic wastes. However, the effects of the NSS practice on crop yields, being the primary objective of agricultural activity, is still uncertain in China. This study conducted a meta-analysis to assess the impacts of the NSS practices with different types of organic materials on crop yields. Results showed that the average crop yield was increased by 3.4%, with significant differences under NSS, thereby demonstrating that this practice contributed to improving crop yields, especially of rice and maize. According to published reports, the NSS practices involving chicken manure, pig manure, and crop straw increased crop yields by 4.79, 7.68, and 3.28%, respectively, with significant differences, thus demonstrating the superior effects needed for replacing synthetic N fertilizer. Moreover, substitution ratios (SR) between 0% and 60% could be suggested when using the NSS practice, with the high SR recommended when the original soil fertility was adequate for crops. Considering the long-term effects of applied organic materials, improving the grain yield with the NSS practice should be expected in the long-term. By effectively applying the NSS, this study attempted to scientifically decide on the type of organic materials and the appropriate SR based on the conditions of the soil and the crop. The results provide research information for the development of clean agricultural production and food security in China.


2000 ◽  
Vol 36 (2) ◽  
pp. 205-221 ◽  
Author(s):  
T. J. REGO ◽  
V. NAGESWARA RAO

In southern and central India, farmers crop Vertisols only in the post-rainy season, to avoid land management problems in the rainy season. In 1983 ICRISAT established a long-term trial seeking to intensify cropping. The trial included intercrops, sequential crops and appropriate Vertisol management technology to allow consecutive rainy-season and post-rainy season crops to be grown. Benefits provided by legumes to succeeding rainy-season sorghum (Sorghum bicolor) were analysed in relation to a non-legume system of sorghum + safflower (Carthamus tinctorius). Rainy-season sorghum grain yield production was sustained at about 2.7 t ha−1 over 12 years within a continuous sorghum–pigeonpea (Cajanus cajan) intercrop system. With a cowpea–pigeonpea intercrop system, succeeding sorghum benefitted each year by about 40 kg N ha−1 (fertilizer nitrogen (N) equivalent). Without N fertilizer application the sorghum grain yield was around 3.3 t ha−1. Legume benefits were less marked in the chickpea (Cicer arietinum)-based rotation than in the pigeonpea system, in which a 12-year build up of soil total N (about 125 μg g−1) was observed. Although sorghum benefitted from this system, pigeonpea yields declined over time due to soil-borne fungi and nematodes. Wider rotations of crops with pigeonpea may help to overcome these problems, while sustaining sorghum production.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 780
Author(s):  
Muhammad Qaswar ◽  
Jing Huang ◽  
Waqas Ahmed ◽  
Dongchu Li ◽  
Shujun Liu ◽  
...  

Cultivation of green manure (GM) crops in intensive cropping systems is important for enhancing crop productivity through soil quality improvement. We investigated yield sustainability, nutrient stocks, nutrient balances and enzyme activities affected by different long-term (1982–2016) green manure rotations in acidic paddy soil in a double-rice cropping system. We selected four treatments from a long-term experiment, including (1) rice-rice-winter fallow as a control treatment (R-R-F), (2) rice-rice-milkvetch (R-R-M), (3) rice-rice-rapeseed (R-R-R), and (4) rice-rice-ryegrass (R-R-G). The results showed that different GM rotations increased grain yield and the sustainable yield index compared with those of the R-R-F treatment. Compared with those of R-R-F, the average grain yield of early rice in R-R-M, R-R-R, and R-R-G increased by 45%, 29%, and 27%, respectively and that of late rice increased by 46%, 28%, and 26%, respectively. Over the years, grain yield increased in all treatments except R-R-F. Green manure also improved the soil chemical properties (SOM and total and available N and P), except soil pH, compared to those of the control treatment. During the 1983–1990 cultivation period, the soil pH of the R-R-M treatment was lower than that of the R-R-F treatment. The addition of green manure did not mitigate the soil acidification caused by the use of inorganic fertilizers. The soil organic matter (SOM), total nitrogen (TN) and total phosphorus (TP) contents and stocks of C, N and P increased over the years. Furthermore, GM significantly increased phosphatase and urease activities and decreased the apparent N and P balances compared with those in the winter fallow treatment. Variance partitioning analysis revealed that soil properties, cropping systems, and climatic factors significantly influenced annual grain yield. Aggregated boosted tree (ABT) analysis quantified the relative influences of the different soil properties on annual grain yield and showed that the relative influences of TN content, SOM, pH, and TP content on annual crop yield were 27.8%, 25.7%, 22.9%, and 20.7%, respectively. In conclusion, GM rotation is beneficial for sustaining high crop yields by improving soil biochemical properties and reducing N and P balances in acidic soil under double- rice cropping systems.


Sign in / Sign up

Export Citation Format

Share Document