scholarly journals The average number of spanning trees in sparse graphs with given degrees

2017 ◽  
Vol 63 ◽  
pp. 6-25 ◽  
Author(s):  
Catherine Greenhill ◽  
Mikhail Isaev ◽  
Matthew Kwan ◽  
Brendan D. McKay
10.37236/1468 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Edward A. Bender ◽  
E. Rodney Canfield

Suppose that $t \ge 2$ is an integer, and randomly label $t$ graphs with the integers $1 \dots n$. We give sufficient conditions for the number of edges common to all $t$ of the labelings to be asymptotically Poisson as $n \to \infty$. We show by example that our theorem is, in a sense, best possible. For $G_n$ a sequence of graphs of bounded degree, each having at most $n$ vertices, Tomescu has shown that the number of spanning trees of $K_n$ having $k$ edges in common with $G_n$ is asymptotically $e^{-2s/n}(2s/n)^k/k! \times n^{n-2}$, where $s=s(n)$ is the number of edges in $G_n$. As an application of our Poisson-intersection theorem, we extend this result to the case in which maximum degree is only restricted to be ${\scriptstyle\cal O}(n \log\log n/\log n)$. We give an inversion theorem for falling moments, which we use to prove our Poisson-intersection theorem.


2019 ◽  
Vol 38 (2-3) ◽  
pp. 260-298 ◽  
Author(s):  
Kasra Khosoussi ◽  
Matthew Giamou ◽  
Gaurav S Sukhatme ◽  
Shoudong Huang ◽  
Gamini Dissanayake ◽  
...  

Estimation-over-graphs (EoG) is a class of estimation problems that admit a natural graphical representation. Several key problems in robotics and sensor networks, including sensor network localization, synchronization over a group, and simultaneous localization and mapping (SLAM) fall into this category. We pursue two main goals in this work. First, we aim to characterize the impact of the graphical structure of SLAM and related problems on estimation reliability. We draw connections between several notions of graph connectivity and various properties of the underlying estimation problem. In particular, we establish results on the impact of the weighted number of spanning trees on the D-optimality criterion in 2D SLAM. These results enable agents to evaluate estimation reliability based only on the graphical representation of the EoG problem. We then use our findings and study the problem of designing sparse SLAM problems that lead to reliable maximum likelihood estimates through the synthesis of sparse graphs with the maximum weighted tree connectivity. Characterizing graphs with the maximum number of spanning trees is an open problem in general. To tackle this problem, we establish several new theoretical results, including the monotone log-submodularity of the weighted number of spanning trees. We exploit these structures and design a complementary greedy–convex pair of efficient approximation algorithms with provable guarantees. The proposed synthesis framework is applied to various forms of the measurement selection problem in resource-constrained SLAM. Our algorithms and theoretical findings are validated using random graphs, existing and new synthetic SLAM benchmarks, and publicly available real pose-graph SLAM datasets.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 103
Author(s):  
Tao Cheng ◽  
Matthias Dehmer ◽  
Frank Emmert-Streib ◽  
Yongtao Li ◽  
Weijun Liu

This paper considers commuting graphs over the semidihedral group SD8n. We compute their eigenvalues and obtain that these commuting graphs are not hyperenergetic for odd n≥15 or even n≥2. We further compute the Laplacian spectrum, the Laplacian energy and the number of spanning trees of the commuting graphs over SD8n. We also discuss vertex connectivity, planarity, and minimum disconnecting sets of these graphs and prove that these commuting graphs are not Hamiltonian.


1998 ◽  
Vol 179 (1-3) ◽  
pp. 155-166 ◽  
Author(s):  
L. Petingi ◽  
F. Boesch ◽  
C. Suffel

2016 ◽  
Vol 25 (09) ◽  
pp. 1641005
Author(s):  
Jun Ge ◽  
Lianzhu Zhang

In this note, we first give an alternative elementary proof of the relation between the determinant of a link and the spanning trees of the corresponding Tait graph. Then, we use this relation to give an extremely short, knot theoretical proof of a theorem due to Shank stating that a link has component number one if and only if the number of spanning trees of its Tait graph is odd.


2015 ◽  
Vol 91 (3) ◽  
pp. 353-367 ◽  
Author(s):  
JING HUANG ◽  
SHUCHAO LI

Given a connected regular graph $G$, let $l(G)$ be its line graph, $s(G)$ its subdivision graph, $r(G)$ the graph obtained from $G$ by adding a new vertex corresponding to each edge of $G$ and joining each new vertex to the end vertices of the corresponding edge and $q(G)$ the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and new edges joining the pairs of new vertices which lie on adjacent edges of $G$. A formula for the normalised Laplacian characteristic polynomial of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$) in terms of the normalised Laplacian characteristic polynomial of $G$ and the number of vertices and edges of $G$ is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for the number of spanning trees of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$).


10.37236/2389 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Murali Krishna Srinivasan

The number of spanning trees of a graph $G$ is called the complexity of $G$. A classical result in algebraic graph theory explicitly diagonalizes the Laplacian of the $n$-cube $C(n)$  and yields, using the Matrix-Tree theorem, an explicit formula for $c(C(n))$. In this paper we explicitly block diagonalize the Laplacian of the $q$-analog $C_q(n)$ of $C(n)$ and use this, along with the Matrix-Tree theorem, to give a positive combinatorial formula for $c(C_q(n))$. We also explain how setting $q=1$ in the formula for $c(C_q(n))$ recovers the formula for $c(C(n))$.


10.37236/3752 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Catherine Greenhill ◽  
Matthew Kwan ◽  
David Wind

Let $d\geq 3$ be a fixed integer.   We give an asympotic formula for the expected number of spanning trees in a uniformly random $d$-regular graph with $n$ vertices. (The asymptotics are as $n\to\infty$, restricted to even $n$ if $d$ is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed) $d$. Numerical evidence is presented which supports our conjecture.


Sign in / Sign up

Export Citation Format

Share Document