Murine Double Minute 2 siRNA and wild-type p53 gene therapy interact positively with zinc on prostate tumours in vitro and in vivo

2014 ◽  
Vol 50 (6) ◽  
pp. 1184-1194 ◽  
Author(s):  
Junlian Gu ◽  
Bo Wang ◽  
Yanan Liu ◽  
Lingzhi Zhong ◽  
Yufeng Tang ◽  
...  
Gut ◽  
1999 ◽  
Vol 44 (3) ◽  
pp. 366-371 ◽  
Author(s):  
M Ohashi ◽  
F Kanai ◽  
H Ueno ◽  
T Tanaka ◽  
K Tateishi ◽  
...  

BACKGROUND/AIMSGastric cancer is one of the most prevalent forms of cancer in East Asia. Point mutation of the p53 gene has been reported in more than 60% of cases of gastric cancer and can lead to genetic instability and uncontrolled cell proliferation. The purpose of this investigation was to evaluate the potential of p53 gene therapy for gastric cancer.METHODSThe responses of human gastric cancer cell lines, MKN1, MKN7, MKN28, MKN45, and TMK-1, to recombinant adenoviruses encoding wild type p53 (AdCAp53) were analysed in vitro. The efficacy of the AdCAp53 treatment for MKN1 and MKN45 subcutaneous tumours in nude mice was assessed in vivo.RESULTSp53-specific growth inhibition was observed in vitro in two of four gastric cancer cell lines with mutated p53, but not in the wild type p53 cell line. The mechanism of the killing of gastric cancer cells by AdCAp53 was found, by flow cytometric analysis and detection of DNA fragmentation, to be apoptosis. In vivo studies showed that the growth of subcutaneous tumours of p53 mutant MKN1 cells was significantly inhibited by direct injection of AdCAp53, but no significant growth inhibition was detected in the growth of p53 wild type MKN45 tumours.CONCLUSIONSAdenovirus mediated reintroduction of wild type p53 is a potential clinical utility in gene therapy for gastric cancers.


2010 ◽  
Vol 16 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Qiang Huang ◽  
Zhibo Xia ◽  
Yongping You ◽  
Peiyu Pu

2018 ◽  
Vol 10 (436) ◽  
pp. eaao3003 ◽  
Author(s):  
Luis A. Carvajal ◽  
Daniela Ben Neriah ◽  
Adrien Senecal ◽  
Lumie Benard ◽  
Victor Thiruthuvanathan ◽  
...  

The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell–enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.


Oncogene ◽  
2004 ◽  
Vol 23 (2) ◽  
pp. 418-425 ◽  
Author(s):  
Gianluca Bossi ◽  
Giuseppina Mazzaro ◽  
Alessandro Porrello ◽  
Marco Crescenzi ◽  
Silvia Soddu ◽  
...  

2006 ◽  
Vol 105 (Supplement) ◽  
pp. 208-213 ◽  
Author(s):  
Desheng Xu ◽  
Qiang Jia ◽  
Yanhe Li ◽  
Chunsheng Kang ◽  
Peiyu Pu

ObjectThe authors sought to study the combined potential of wild-type p53 gene transfer and Gamma Knife surgery (GKS) for the treatment of glioblastomas multiforme. Modification of the radiation response in C6 glioma cells in vitro and in vivo by the wild-type p53 gene was investigated.MethodsStable expression of wild-type p53 in C6 cells was achieved by transduction of the cells with adenoviral p53. Two days later, some cells were treated with GKS. Forty-eight hours after irradiation, the comparative survival rate was assessed by monotetrazolium (MTT) assays. Treated and control C6 glioma cells (4 × 103 per well) were plated into a 96-well plate in octuplicate and tested every 24 hours. Meanwhile, immunohistopathological examination of proliferating cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate (TUNEL) assays were performed. The MTT assays indicated the p53, GKS, and combined treated cells proliferated at a significantly lower rate than those of the control group (p < 0.01, Days 2–6) and the positive fraction of PCNA in p53-treated group and GKS-treated group was 70.18 ± 3.61 and 50.71 ± 2.61, respectively, whereas the percentage in the combined group was 30.68 ± 1.49 (p < 0.01).Fifty-six male Sprague–Dawley rats were anesthetized and inoculated with 106 cultured C6 glioma cells into the cerebrum. Forty-eight hours after transduction with adenoviral p53, some rats underwent GKS. A margin dose of 15 Gy was delivered to the 50% isodose line. Two days later, six rats in each group were killed. Their brains were removed and paraffin-embedded section were prepared for immunohistopathological examination and TUNEL assays. The remaining rats were observed for the duration of the survival period. The survival curve indicated that a modest but significant enhancement of survival duration was seen in the p53-treated or GKS alone groups, whereas a more marked and highly significant enhancement of survival duration was achieved when these two treatment modalities were combined. When PCNA expression was downregulated, apoptotic cells become obvious after TUNEL staining.Conclusions The findings of this study suggest that p53-based gene therapy in combination with GKS may be superior to single-modality treatment of C6 glioma.


2015 ◽  
Vol 112 (32) ◽  
pp. 10002-10007 ◽  
Author(s):  
Liang Chen ◽  
Farooq Rashid ◽  
Abdullah Shah ◽  
Hassaan M. Awan ◽  
Mingming Wu ◽  
...  

p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice.


1995 ◽  
Vol 15 (8) ◽  
pp. 4249-4259 ◽  
Author(s):  
A M Yahanda ◽  
J M Bruner ◽  
L A Donehower ◽  
R S Morrison

Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes.


1993 ◽  
Vol 13 (1) ◽  
pp. 301-306 ◽  
Author(s):  
C A Finlay

Expression of a p53-associated protein, Mdm-2 (murine double minute-2), can inhibit p53-mediated transactivation. In this study, overexpression of the Mdm-2 protein was found to result in the immortalization of primary rat embryo fibroblasts (REFs) and, in conjunction with an activated ras gene, in the transformation of REFs. The effect of wild-type p53 on the transforming properties of mdm-2 was determined by transfecting REFs with ras, mdm-2, and normal p53 genes. Transfection with ras plus mdm-2 plus wild-type p53 resulted in a 50% reduction in the number of transformed foci (relative to the level for ras plus mdm-2); however, more than half (9 of 17) of the cell lines derived from these foci expressed low levels of a murine p53 protein with the characteristics of a wild-type p53. These results are in contrast to previous studies which demonstrated that even minimal levels of wild-type p53 are not tolerated in cells transformed by ras plus myc, E1A, or mutant p53. The mdm-2 oncogene can overcome the previously demonstrated growth-suppressive properties of p53.


2017 ◽  
Vol 16 (6) ◽  
pp. 9137-9142
Author(s):  
Long Liu ◽  
Ping Zhang ◽  
Hua Guo ◽  
Xinyu Tang ◽  
Lianqin Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document