The G-protein regulatory (GPR) motif-containing Leu–Gly–Asn-enriched protein (LGN) and Giα3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells

2006 ◽  
Vol 85 (12) ◽  
pp. 1233-1240 ◽  
Author(s):  
Joe B. Blumer ◽  
Ryoko Kuriyama ◽  
Thomas W. Gettys ◽  
Stephen M. Lanier
2002 ◽  
Vol 158 (5) ◽  
pp. 841-847 ◽  
Author(s):  
Marko J. Kallio ◽  
Victoria A. Beardmore ◽  
Jasminder Weinstein ◽  
Gary J. Gorbsky

Cdc20 is a substrate adaptor and activator of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase whose activity is required for anaphase onset and exit from mitosis. A green fluorescent protein derivative, Cdc20–GFP, bound to centrosomes throughout the cell cycle and to kinetochores from late prophase to late telophase. We mapped distinct domains of Cdc20 that are required for association with kinetochores and centrosomes. FRAP measurements revealed extremely rapid dynamics at the kinetochores (t1/2 = 5.1 s) and spindle poles (t1/2 = 4.7 s). This rapid turnover is independent of microtubules. Rapid transit of Cdc20 through kinetochores may ensure that spindle checkpoint signaling at unattached/relaxed kinetochores can continuously inhibit APC/CCdc20 targeting of anaphase inhibitors (securins) throughout the cell until all the chromosomes are properly attached to the mitotic spindle.


Author(s):  
Marcus A Begley ◽  
April L Solon ◽  
Elizabeth Mae Davis ◽  
Michael Grant Sherrill ◽  
Ryoma Ohi ◽  
...  

The mitotic spindle, a self-constructed microtubule-based machine, segregates chromosomes during cell division. In mammalian cells, microtubule bundles called kinetochore-fibers (k-fibers) connect chromosomes to the spindle poles. Chromosome segregation thus depends on the mechanical integrity of k-fibers. Here, we investigate the physical and molecular basis of k-fiber bundle cohesion. We detach k-fibers from poles by laser ablation-based cutting, thus revealing the contribution of pole-localized forces to k-fiber cohesion. We then measure the physical response of the remaining kinetochore-bound segments of the k-fibers. We observe that microtubules within ablated k-fibers often splay apart from their minus-ends. Furthermore, we find that minus-end clustering forces induced by ablation seem at least partially responsible for k-fiber splaying. We also investigate the role of the k-fiber-binding kinesin-12 Kif15. We find that pharmacological inhibition of Kif15-microtubule binding reduces the mechanical integrity of k-fibers. In contrast, inhibition of its motor activity but not its microtubule binding ability, i.e., locking Kif15 into a rigor state, does not greatly affect splaying. Altogether, the data suggest that forces holding k-fibers together are of similar magnitude to other spindle forces, and that Kif15, acting as a microtubule crosslinker, helps fortify and repair k-fibers. This feature of Kif15 may help support robust k-fiber function and prevent chromosome segregation errors. [Media: see text] [Media: see text] [Media: see text]


2011 ◽  
Vol 195 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Nan Ma ◽  
Janel Titus ◽  
Alyssa Gable ◽  
Jennifer L. Ross ◽  
Patricia Wadsworth

Mitotic spindle assembly requires the regulated activity of numerous spindle-associated proteins. In mammalian cells, the Kinesin-5 motor Eg5 interacts with the spindle assembly factor TPX2, but how this interaction contributes to spindle formation and function is not established. Using bacterial artificial chromosome technology, we generated cells expressing TPX2 lacking the Eg5 interaction domain. Spindles in these cells were highly disorganized with multiple spindle poles. The TPX2–Eg5 interaction was required for kinetochore fiber formation and contributed to Eg5 localization to spindle microtubules but not spindle poles. Microinjection of the Eg5-binding domain of TPX2 resulted in spindle elongation, indicating that the interaction of Eg5 with TPX2 reduces motor activity. Consistent with this possibility, we found that TPX2 reduced the velocity of Eg5-dependent microtubule gliding, inhibited microtubule sliding, and resulted in the accumulation of motor on microtubules. These results establish a novel function of TPX2 in regulating the location and activity of the mitotic motor Eg5.


2001 ◽  
Vol 7 (S2) ◽  
pp. 582-583
Author(s):  
W. Lingle ◽  
J. Salisbury ◽  
S. Barrett ◽  
V. Negron ◽  
C. Whitehead

The centrosome is the major microtubule organizing center in most mammalian cells, and as such it determines the number, polarity, and spatial distribution of microtubules (MTs). Interphase MTs, together with actin and intermediate filaments, constitute the cell's cytoskeleton, which dynamically maintains cell polarity and tissue architecture. Interphase cells begin Gl of the cell cycle with one centrosome. During S phase, the centrosome duplicates concomitantly with DNA replication. Duplicated centrosomes usually remain in close proximity to one another until late G2, at which time they separate and then move during prophase to become the poles that organize the bipolar mitotic spindle. During the G2/M transition, interphase MTs depolymerize and a new population of highly dynamic mitotic MTs are nucleated at the spindle poles. The bipolar mitotic spindle apparatus constitutes the machinery that partitions and separates sister chromatids equally between two daughter cells.


2008 ◽  
Vol 36 (3) ◽  
pp. 381-383 ◽  
Author(s):  
Henrik Bringmann

The mitotic spindle positions the cytokinesis furrow. The cytokinesis furrow then forms and ingresses at the site of the mitotic spindle, between the spindle poles. Two populations of spindle microtubules are implicated in cytokinesis furrow positioning: radial microtubule arrays called asters and bundled non-kinetochore microtubules called the spindle midzone. Here I will discuss our recent results that provided examples of how aster-positioned and midzone-positioned cytokinesis can be mechanically and genetically separated. These experiments illustrate how asters and midzone contribute to cytokinesis. ASS (asymmetric spindle severing) is a mechanical way to spatially separate the aster and midzone signals. In Caenorhabditis elegans embryos, asters and midzone provide two consecutive signals that position the cytokinesis furrow. The first signal is positioned midway between the microtubule asters; the second signal is positioned over the spindle midzone. Aster and midzone contribution can also be genetically separated. Mutants in spd-1 have no detectable midzone and are defective in midzone-positioned but not aster-positioned cytokinesis. Disruption of the function of LET-99 and the heterotrimeric G-proteins GOA-1/GPA-16 and their regulator GPR-1/2 causes defects in aster-positioned cytokinesis but not in midzone-positioned cytokinesis. In order to understand aster-positioned cytokinesis we have to understand how microtubule asters spatially control the activity of LET-99, GPR-1/2 and GOA-1/GPA-16 and how the activity of these G-protein pathway components control the assembly of a contractile ring.


2008 ◽  
Vol 36 (3) ◽  
pp. 442-443 ◽  
Author(s):  
Guillaume Montagnac ◽  
Philippe Chavrier

In mammalian cells, completion of cytokinesis relies on targeted delivery of recycling membranes to the midbody. At this step of mitosis, recycling endosomes are organized as clusters located at the mitotic spindle poles as well as at both sides of the midbody. However, the mechanism that controls endosome positioning during cytokinesis is not known. Here, we discuss the possible mechanisms that drive the formation of endosomal clusters and the importance of this process for the targeted delivery of recycling membranes to the midbody.


2021 ◽  
Author(s):  
Alessandro Dema ◽  
Jeffrey van Haren ◽  
Torsten Wittmann

Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: Kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex [1,2]. In mammalian cells, End Binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for a diverse group of +TIPs that control microtubule dynamics and interactions with other intracellular structures [3]. Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation [4-6] the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light sensitive EB1 variant, π-EB1, that allows local, acute and reversible inactivation of +TIP association with growing microtubule ends in live cells [7]. We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase, but instead increases astral microtubule length and number. Yet, in the absence of EB1 activity astral microtubules fail to engage the cortical dynein/dynactin machinery and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments likely due to compensatory molecular systems regulating vertebrate spindle dynamics.


Open Biology ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 170218 ◽  
Author(s):  
Jane Harmer ◽  
Katie Towers ◽  
Max Addison ◽  
Sue Vaughan ◽  
Michael L. Ginger ◽  
...  

Proteins of the FGR1 oncogene partner (or FOP) family are found at microtubule organizing centres (MTOCs) including, in flagellate eukaryotes, the centriole or flagellar basal body from which the axoneme extends. We report conservation of FOP family proteins, Tb FOPL and Tb OFD1, in the evolutionarily divergent sleeping sickness parasite Trypanosoma brucei , showing (in contrast with mammalian cells, where FOP is essential for flagellum assembly) depletion of a trypanosome FOP homologue, Tb FOPL, affects neither axoneme nor flagellum elongation. Instead, Tb FOPL depletion causes catastrophic failure in assembly of a lineage-specific, extra-axonemal structure, the paraflagellar rod (PFR). That depletion of centriolar Tb FOPL causes failure in PFR assembly is surprising because PFR nucleation commences approximately 2 µm distal from the basal body. When over-expressed with a C-terminal myc-epitope, Tb FOPL was also observed at mitotic spindle poles. Little is known about bi-polar spindle assembly during closed trypanosome mitosis, but indication of a possible additional MTOC function for Tb FOPL parallels MTOC localization of FOP-like protein TONNEAU1 in acentriolar plants. More generally, our functional analysis of Tb FOPL emphasizes significant differences in evolutionary cell biology trajectories of FOP-family proteins. We discuss how at the molecular level FOP homologues may contribute to flagellum assembly and function in diverse flagellates.


2009 ◽  
Vol 184 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Jen-Hsuan Wei ◽  
Joachim Seemann

The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.


Author(s):  
Martha J. Larsen ◽  
Elizabeth Ruiz Lancheros ◽  
Tracey Williams ◽  
David E. Lowery ◽  
Timothy G. Geary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document