scholarly journals Functional expression and characterization of the C. elegans G-protein-coupled FLP-2 Receptor (T19F4.1) in mammalian cells and yeast

Author(s):  
Martha J. Larsen ◽  
Elizabeth Ruiz Lancheros ◽  
Tracey Williams ◽  
David E. Lowery ◽  
Timothy G. Geary ◽  
...  
1994 ◽  
Vol 269 (2) ◽  
pp. 1099-1105 ◽  
Author(s):  
P. Kunapuli ◽  
J.J. Onorato ◽  
M.M. Hosey ◽  
J.L. Benovic

2004 ◽  
Vol 332 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Thomas Roeder ◽  
Derk Görich ◽  
Dörte Heyden ◽  
Michael Gewecke

Endocrinology ◽  
2000 ◽  
Vol 141 (11) ◽  
pp. 4081-4090 ◽  
Author(s):  
Shinya Nishi ◽  
Sheau Yu Hsu ◽  
Karen Zell ◽  
Aaron J. W. Hsueh

Abstract The receptors for lutropin (LH), FSH, and TSH belong to the large G protein-coupled receptor (GPCR) superfamily and are unique in having a large N-terminal extracellular (ecto-) domain important for interactions with the large glycoprotein hormone ligands. Recent studies indicated the evolution of a large family of the leucine-rich repeat-containing, G protein-coupled receptors (LGRs) with at least seven members in mammals. Based on the sequences of mammalian glycoprotein hormone receptors, we have identified a new LGR in Drosophila melanogaster and named it as fly LGR2 to distinguish it from the previously reported fly LH/FSH/TSH receptor (renamed as fly LGR1). Genomic analysis indicated the presence of 10 exons in fly LGR2 as compared with 16 exons in fly LGR1. The deduced fly LGR2 complementary DNA (cDNA) showed 43 and 64% similarity to the fly LGR1 in the ectodomain and transmembrane region, respectively. Comparison of 12 LGRs from diverse species indicated that these proteins can be divided into three subfamilies and fly LGR1 and LGR2 belong to different subfamilies. Potential signaling mechanisms were tested in human 293T cells overexpressing the fly receptors. Of interest, fly LGR1, but not LGR2, showed constitutive activity as reflected by elevated basal cAMP production in transfected cells. The basal activity of fly LGR1 was further augmented following point mutations of key residues in the intracellular loop 3 or transmembrane VI, similar to those found in patients with familial male precocious puberty. The present study reports the cloning of fly LGR2 and indicates that the G protein-coupling mechanism is conserved in fly LGR1 as compared with the mammalian glycoprotein hormone receptors. The characterization of fly receptors with features similar to mammalian glycoprotein hormone receptors allows a better understanding of the evolution of this unique group of GPCRs and future elucidation of their ligand signaling mechanisms.


2018 ◽  
Vol 6 (4) ◽  
pp. 28 ◽  
Author(s):  
Daniel Matúš ◽  
Simone Prömel

Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in C. elegans but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and C. elegans is an ideal model to understand the underlying principles.


2012 ◽  
Vol 59 (4) ◽  
Author(s):  
Dorota Latek ◽  
Anna Modzelewska ◽  
Bartosz Trzaskowski ◽  
Krzysztof Palczewski ◽  
Sławomir Filipek

The years 2000 and 2007 witnessed milestones in current understanding of G protein-coupled receptor (GPCR) structural biology. In 2000 the first GPCR, bovine rhodopsin, was crystallized and the structure was solved, while in 2007 the structure of β(2)-adrenergic receptor, the first GPCR with diffusible ligands, was determined owing to advances in microcrystallization and an insertion of the fast-folding lysozyme into the receptor. In parallel with those crystallographic studies, the biological and biochemical characterization of GPCRs has advanced considerably because those receptors are molecular targets for many of currently used drugs. Therefore, the mechanisms of activation and signal transduction to the cell interior deduced from known GPCRs structures are of the highest importance for drug discovery. These proteins are the most diversified membrane receptors encoded by hundreds of genes in our genome. They participate in processes responsible for vision, smell, taste and neuronal transmission in response to photons or binding of ions, hormones, peptides, chemokines and other factors. Although the GPCRs share a common seven-transmembrane α-helical bundle structure their binding sites can accommodate thousands of different ligands. The ligands, including agonists, antagonists or inverse agonists change the structure of the receptor. With bound agonists they can form a complex with a suitable G protein, be phosphorylated by kinases or bind arrestin. The discovered signaling cascades invoked by arrestin independently of G proteins makes the GPCR activating scheme more complex such that a ligand acting as an antagonist for G protein signaling can also act as an agonist in arrestin-dependent signaling. Additionally, the existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.


Sign in / Sign up

Export Citation Format

Share Document