scholarly journals Evaluation of some natural water-insoluble cellulosic material as lost circulation control additives in water-based drilling fluid

2015 ◽  
Vol 24 (4) ◽  
pp. 461-468 ◽  
Author(s):  
Ahmed Mohamed Alsabagh ◽  
Mahmoud Ibrahim Abdou ◽  
Hany El-sayed Ahmed ◽  
Ahmed Abdel-salam Khalil ◽  
Amany Ayman Aboulrous
Author(s):  
James L. Nielsen ◽  
Syed Y. Nahri ◽  
Wei Zhao ◽  
Panfeng Wei ◽  
Yuanhang Chen

Abstract This study investigates how different sized fibers used commonly as Lost Circulation Material (LCM) change the time required for induction and agglomeration of natural gas hydrates in drilling fluids using laboratory experimentally obtained data. Three different sizes of LCM fibers, fine, medium and coarse, were studied to observe how the size of each type of fiber affects the rate of hydrates growth. THF-Water clathrate hydrates were used as a model for hydrate growth at standard pressure conditions using a 20:80 molar ratio of THF to water. The concentrations of LCM fibers tested varied between 1–3% by weight. Each type of fiber was tested individually at −6 °C, −3 °C, and 0 °C and monitored for changes in hydrate induction and agglomeration rates. Tests were repeated using water-based drilling fluids using bentonite as the primary viscosifier and barite as a weighting agent to test 10, 12, and 14 ppg fluids. Fibers were tested under static conditions to identify changes in the nucleation and agglomeration rates for each. The rates of hydrate nucleation between samples of THF-Water and LCM fibers and each sample of water-based drilling fluid with LCM fibers was found to be consistent with no statistically significant change in rate being observed due to the fibers present. However, we observed a significant change in the rate of agglomeration that was dependent on the size and concentration of the fiber particles. We identified that fine fibers provided the most significant increase in the rate of agglomeration followed by medium and coarse fibers, respectively, with increasing LCM fiber concentrations. Compared to control samples, using fibers produced initial hydrate agglomeration around the freely suspended fibers. Due to their proximity to other fibers with hydrates developing around them, the hydrates were able to form very large free moving crystals in the solution before completely agglomerating and forming a solid plug. The results and conclusions provide new insights and guidance in drilling fluids and LCM design for offshore deep-water drilling. Gas hydrates can potentially develop and agglomerate along in the BOP and kill/choke lines during a well control event, as what is suspected as what happened in Macondo blowout where a considerable amount LCMs were used during drilling and as a spacer during a negative pressure test.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Nor Fatihah Abdul Majid ◽  
Issham Ismail ◽  
Mohd Fauzi Hamid

Lost circulation is one of the drilling operational problems. It refers to the total or partial loss of drilling fluid into highly permeable zones or natural or induced fractures. This problem is likely to occur when the hydrostatic head pressure of drilling fluid in the hole exceeds the formation pressure. Today, managing lost circulation remains a significant challenge to oilwell drilling operations because it may contribute to high non-productive time. It is imperative to note that the overbalance pressure situation also can cause the invasion of mud filtrate into production zones which will result in formation damage. To address these problems, an experimental investigation has been done on durian rind as an alternative fluid loss and lost circulation materials in water-based mud. Durian rind was selected as a mud loss control material because it contains close to 20% pectin which may complement the formation of high quality mat-like bridges across openings of the formation. The test involved the use of standard mud testing equipment and a lost circulation test cell. Durian rind powder was prepared by cleaning and cutting the durian rind into small pieces of 1 to 2 cm, and then dried them in an oven at 60°C for 48 hours before grinding into five different sizes from coarse to ultra-fine while Hydro-plug, the commercial lost circulation material was supplied by Scomi Energy. The fluid loss test was conducted using a standard low pressure filter press while the bridging test was carried out at 100 psi of pressure difference and ambient temperature using a lost circulation cell. Fine durian in the water-based mud gave the best fluid loss control compared to coarse durian rind, fine and coarse Hydro-plug. The experimental results also showed that at 15 lb/bbl (42.8 kg/m3) optimum concentration, coarse and intermediate durian rind have outperformed Hydro-plug by showing an excellent control of mud losses in 1 and 2 mm simulated fractures.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiao Cai ◽  
Boyun Guo ◽  
Qingfeng Guo ◽  
Hongwei Jiang

Lost circulation has been one of the major problems that impede efficient and cost-saving drilling operations. The nature of lost circulation and its control is not yet fully understood. A method to characterize the mud loss in fracture and the plugging process of lost circulation materials is highly desired to obtain a thorough understanding of mud losses in fracture and provide reference for lost circulation control. This paper presents an easy-to-use method to identify types of lost circulation in fracture and the corresponding control. Three analytical models are presented based on three loss mechanisms, namely, seepage/filtration in a fracture, pipe flow in a fracture, and gravity displacement in a fracture. A numerical model is developed to simulate the deposition of lost circulation materials in fractures and predict the time and the volume of drilling fluid needed for lost circulation control. Case studies with these analytical models provide a deeper insight of this subject. Sensitivity analyses with the numerical model identify the major factors responsible for lost circulation control. High viscosity of drilling fluid may prevent lost circulation, while low viscosity is desired for a fast control of lost circulation. Lowering the density of drilling fluid is another way to prevent the lost circulation and facilitate the deposition of lost circulation materials. Lost circulation materials with high density could deposit faster close to the wellbore and therefore accelerating the control process. High concentration of lost circulation materials is likely to shorten the plugging time, which should be determined referring to the severity of loss. This work provides drilling engineers a practical method for simulating the lost circulation and selecting lost circulation material.


2012 ◽  
Vol 204-208 ◽  
pp. 699-702 ◽  
Author(s):  
Long Li ◽  
Ying Min Li ◽  
Yu Ping Yang ◽  
Cha Ma

Nanomaterials are of great importance to improving mudcake quality, reducing lost circulation, enhancing borehole stability, and protecting reservoir. Some nanomaterials, including nanometer plugging materials, nano-sized MMH drilling fluids, nanocomposite super-short fibers, water-based film-forming drilling fluids, nano-based drilling fluid, and so on, are introduced, and all of them have significantly influence on reservoir protection. As a result, the application of nanomaterials in the field of reservoir protection is very useful for maintaining borehole stability and protecting reservoir.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Issham Ismail ◽  
Anum Bisyarah Mohd Nor ◽  
Mohd. Fauzi Hamid ◽  
Abdul Razak Ismail

A laboratory investigation has been done on durian rind, a fibrous material, as an alternative lost circulation material in water-based mud. The experimental works covered the rheological properties and lost circulation tests which were conducted before and after the hot-rolling tests as per API RP 13B. Those tests involved the use of standard mud testing equipment and a lost circulation test cell. The optimum concentration of the durian rind―which had been cleaned, cut into small pieces, dried in an oven at 60°C for 24 hours, and ground into small fine particles―was determined before a performance comparison study was done on both Hydro-plug (i.e., a commercial lost circulation material) and durian rind of different sizes, namely fine (0.5 mm), medium (1.0 mm), and coarse (2.0 mm). The experimental results showed that the durian rind worked well in combating the lost circulation. At its optimum concentration of 20 lb/bbl, the coarse durian rind was found to have performed excellently in combating lost circulation in 1 mm and 2 mm fractures. The standard rheological test showed that the rheological properties of drilling fluid were not too affected at standard temperature of 75°F but they changed significantly after the hot-rolling tests. The change in rheological properties was due to the flocculation of bentonite and chemical reaction of the pectin in durian rind.


Author(s):  
Nasiru Salahu Muhammed ◽  
Teslim Olayiwola ◽  
Salaheldin Elkatatny ◽  
Bashirul Haq ◽  
Shirish Patil

2021 ◽  
Vol 35 (6) ◽  
pp. 5264-5270
Author(s):  
Yong He ◽  
Zhen Long ◽  
Jingsheng Lu ◽  
Lingli Shi ◽  
Wen Yan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


Sign in / Sign up

Export Citation Format

Share Document