MicroRNA-17 impairs glucose metabolism in insulin-resistant skeletal muscle via repressing glucose transporter 4 expression

2018 ◽  
Vol 838 ◽  
pp. 170-176 ◽  
Author(s):  
Dan Xiao ◽  
Tong Zhou ◽  
Yujie Fu ◽  
Rui Wang ◽  
Haiying Zhang ◽  
...  
1997 ◽  
Vol 273 (1) ◽  
pp. E185-E191 ◽  
Author(s):  
R. S. Streeper ◽  
E. J. Henriksen ◽  
S. Jacob ◽  
J. Y. Hokama ◽  
D. L. Fogt ◽  
...  

The racemic mixture of the antioxidant alpha-lipoic acid (ALA) enhances insulin-stimulated glucose metabolism in insulin-resistant humans and animals. We determined the individual effects of the pure R-(+) and S-(-) enantiomers of ALA on glucose metabolism in skeletal muscle of an animal model of insulin resistance, hyperinsulinemia, and dyslipidemia: the obese Zucker (fa/fa) rat. Obese rats were treated intraperitoneally acutely (100 mg/kg body wt for 1 h) or chronically [10 days with 30 mg/kg of R-(+)-ALA or 50 mg/kg of S-(-)-ALA]. Glucose transport [2-deoxyglucose (2-DG) uptake], glycogen synthesis, and glucose oxidation were determined in the epitrochlearis muscles in the absence or presence of insulin (13.3 nM). Acutely, R-(+)-ALA increased insulin-mediated 2-DG-uptake by 64% (P < 0.05), whereas S-(-)-ALA had no significant effect. Although chronic R-(+)-ALA treatment significantly reduced plasma insulin (17%) and free fatty acids (FFA; 35%) relative to vehicle-treated obese animals, S-(-)-ALA treatment further increased insulin (15%) and had no effect on FFA. Insulin-stimulated 2-DG uptake was increased by 65% by chronic R-(+)-ALA treatment, whereas S-(-)-ALA administration resulted in only a 29% improvement. Chronic R-(+)-ALA treatment elicited a 26% increase in insulin-stimulated glycogen synthesis and a 33% enhancement of insulin-stimulated glucose oxidation. No significant increase in these parameters was observed after S-(-)-ALA treatment. Glucose transporter (GLUT-4) protein was unchanged after chronic R-(+)-ALA treatment but was reduced to 81 +/- 6% of obese control with S-(-)-ALA treatment. Therefore, chronic parenteral treatment with the antioxidant ALA enhances insulin-stimulated glucose transport and non-oxidative and oxidative glucose metabolism in insulin-resistant rat skeletal muscle, with the R-(+) enantiomer being much more effective than the S-(-) enantiomer.


2007 ◽  
Vol 292 (5) ◽  
pp. R1926-R1933 ◽  
Author(s):  
Xing-Hai Yao ◽  
B. L. Grégoire Nyomba

Adverse events during pregnancy, including prenatal ethanol (EtOH) exposure, are associated with insulin-resistant diabetes in male rat offspring, but it is unclear whether this is true for female offspring. We investigated whether prenatal EtOH exposure alters glucose metabolism in adult female rat offspring and whether this is associated with reduced in vivo insulin signaling in skeletal muscle. Female Sprague-Dawley rats were given EtOH, 4 g·kg−1·day−1 by gavage throughout pregnancy. Glucose tolerance test and hyperinsulinemic euglycemic clamp were performed, and insulin signaling was investigated in skeletal muscle, in adult female offspring. We gave insulin intravenously to these rats and determined the association of glucose transporter-4 with plasma membranes, as well as the phosphorylation of phosphoinositide-dependent protein kinase-1 (PDK1), Akt, and PKCζ. Although EtOH offspring had normal birth weight, they were overweight as adults and had fasting hyperglycemia, hyperinsulinemia, and reduced insulin-stimulated glucose uptake. After insulin treatment, EtOH-exposed rats had decreased membrane glucose transporter-4, PDK1, Akt, and PKCζ in the gastrocnemius muscle, compared with control rats. Insulin stimulation of PDK1, Akt, and PKCζ phosphorylation was also reduced. In addition, the expression of the protein tribbles-3 and the phosphatase enzyme activity of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which prevent Akt activation, were increased in muscle from EtOH-exposed rats. Female rat offspring exposed to EtOH in utero develop insulin-resistant diabetes in association with excessive PTEN and tribbles-3 signaling downstream of the phosphatidylinositol 3-kinase pathway in skeletal muscle, which may be a mechanism for the abnormal glucose tolerance.


2007 ◽  
Vol 21 (9) ◽  
pp. 2152-2163 ◽  
Author(s):  
Lily C. Chao ◽  
Zidong Zhang ◽  
Liming Pei ◽  
Tsugumichi Saito ◽  
Peter Tontonoz ◽  
...  

Abstract Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared with oxidative muscle and is responsive to β-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including glucose transporter 4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including glucose transporter 4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by small hairpin RNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple genes involved in glucose metabolism in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Mei-Hsing Chen ◽  
Cheng-Hsiu Lin ◽  
Chun-Ching Shih

The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract ofClitocybe nuda(CNE), in high-fat- (HF-) fed mice. C57BL/6J was randomly divided into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts) or rosiglitazone (Rosi) or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001,P<0.01,P<0.05, resp.) and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT) and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4) were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase) and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK) in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Masataka YOKOYAMA ◽  
Yoshio KOBAYASHI ◽  
Tohru MINAMINO

Cellular senescence is a state of irreversible growth arrest induced by various stresses such as oncogenic stimuli. This response is controlled by negative regulators of the cell cycle like the p53 tumor suppressor protein. Accumulating evidence has suggested a role of p53 activation in various age-associated conditions including atherosclerosis, heart failure and diabetes. Here we show that endothelial p53 activation plays a pathological role in the regulation of endothelial function and glucose metabolism under diabetic conditions. Endothelial expression of p53 was markedly up-regulated in a streptozotocin-induced diabetes model. Endothelial function such as acetylcholine-dependent vasodilatation was markedly impaired in this model. Although hyperglycemia was not altered, impairment of endothelial function was significantly improved in mice with endothelial cell-specific p53 deficiency. In same way, p53 was markedly activated in ischemic vessels, and endothelial p53 deficiency enhanced ischemia-induced angiogenesis. Mechanistically, endothelial p53 up-regulated the expression of PTEN that negatively regulated the Akt-eNOS pathway, and therefore disruption of p53 improved endothelial dysfunction. We also found that endothelial p53 was markedly activated, and the Akt-eNOS pathway was attenuated in a diet-induced obesity model. Disruption of endothelial p53 activation improved dietary inactivation of eNOS that up-regulated the expression of PGC-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Inhibition of endothelial p53 also improved dietary impairment of glucose transport into skeletal muscle by up-regulating endothelial expression of glucose transporter 1. Consequently, mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation compared with control littermates. These results indicate that endothelial p53 negatively regulates endothelium-dependent vasodilatation, ischemia-induced angiogenesis, and mitochondrial biogenesis by inhibiting the Akt-eNOS pathway and suggest that inhibition of endothelial p53 could be a novel therapeutic target in diabetic patients.


2010 ◽  
Vol 74 (5) ◽  
pp. 1062-1067 ◽  
Author(s):  
Nhung Thuy DANG ◽  
Rie MUKAI ◽  
Ken-ichi YOSHIDA ◽  
Hitoshi ASHIDA

Sign in / Sign up

Export Citation Format

Share Document