Pterostilbene alleviates fructose-induced renal fibrosis by suppressing TGF-β1/TGF-β type I receptor/Smads signaling in proximal tubular epithelial cells

2019 ◽  
Vol 842 ◽  
pp. 70-78 ◽  
Author(s):  
Ting-Ting Gu ◽  
Tian-Yu Chen ◽  
Yan-Zi Yang ◽  
Xiao-Juan Zhao ◽  
Yang Sun ◽  
...  
2020 ◽  
Vol 134 (12) ◽  
pp. 1357-1376 ◽  
Author(s):  
Ran You ◽  
Wei Zhou ◽  
Yanwei Li ◽  
Yue Zhang ◽  
Songming Huang ◽  
...  

Abstract Non-specific inhibition of Rho-associated kinases (ROCKs) alleviated renal fibrosis in the unilateral ureteral obstruction (UUO) model, while genetic deletion of ROCK1 did not affect renal pathology in mice. Thus, whether ROCK2 plays a role in renal tubulointerstitial fibrosis needs to be clarified. In the present study, a selective inhibitor against ROCK2 or genetic approach was used to investigate the role of ROCK2 in renal tubulointerstitial fibrosis. In the fibrotic kidneys of chronic kidney diseases (CKDs) patients, we observed an enhanced expression of ROCK2 with a positive correlation with interstitial fibrosis. In mice, the ROCK2 protein level was time-dependently increased in the UUO model. By treating CKD animals with KD025 at the dosage of 50 mg/kg/day via intraperitoneal injection, the renal fibrosis shown by Masson’s trichrome staining was significantly alleviated along with the reduced expression of fibrotic genes. In vitro, inhibiting ROCK2 by KD025 or ROCK2 knockdown/knockout significantly blunted the pro-fibrotic response in transforming growth factor-β1 (TGF-β1)-stimulated mouse renal proximal tubular epithelial cells (mPTCs). Moreover, impaired cellular metabolism was reported as a crucial pathogenic factor in CKD. By metabolomics analysis, we found that KD025 restored the metabolic disturbance, including the impaired glutathione metabolism in TGF-β1-stimulated tubular epithelial cells. Consistently, KD025 increased antioxidative stress enzymes and nuclear erythroid 2-related factor 2 (Nrf2) in fibrotic models. In addition, KD025 decreased the infiltration of macrophages and inflammatory response in fibrotic kidneys and blunted the activation of macrophages in vitro. In conclusion, inhibition of ROCK2 may serve as a potential novel therapy for renal tubulointerstitial fibrosis in CKD.


2019 ◽  
Vol 316 (5) ◽  
pp. F1006-F1015
Author(s):  
Min Wu ◽  
Ye Feng ◽  
Guo-Xin Ye ◽  
Yu-Chen Han ◽  
Si-Si Wang ◽  
...  

316: F1006–F1015, 2019. First published March 6, 2019; doi: 10.1152/ajprenal.00413.2018 .—Experimental studies have shown that pharmacological activation of calcium-sensing receptor (CaSR) attenuates renal fibrosis in some animal models beyond modification of bone and mineral homeostasis; however, its underlying mechanisms remain largely unknown. Since excessive collagen deposition is the key feature of fibrosis, the present study aimed to examine whether CaSR was involved in the regulation of collagen expression in rats with adenine diet-induced renal fibrosis and in profibrotic transforming growth factor (TGF)-β1-treated renal proximal tubular epithelial cells (PTECs). The results showed that the CaSR agonist cinacalcet significantly attenuated renal collagen accumulation and tubular injury in adenine diet-fed rats. Additionally, the in vitro experiment showed that profibrotic TGF-β1 significantly increased the expression of collagen and decreased CaSR expression at the mRNA and protein levels in a concentration- and time-dependent manner. Furthermore, the CaSR CRISPR activation plasmid and cinacalcet partially abrogated the upregulation of collagen induced by TGF-β1 treatment. Blockade of CaSR by the CRISPR/Cas9 KO plasmid or the pharmacological antagonist Calhex231 further enhanced TGF-β1-induced collagen expression. Mechanistic experiments found that Smad2 phosphorylation and Snail expression were markedly increased in PTECs treated with TGF-β1, whereas the CaSR CRISPR activation plasmid and cinacalcet substantially suppressed this induction. In summary, this study provides evidence for a direct renal tubular epithelial protective effect of CaSR activation in renal fibrosis, possibly through suppression of collagen expression in PTECs.


2020 ◽  
Vol 21 (20) ◽  
pp. 7676
Author(s):  
Kohsuke Shirakawa ◽  
Motoaki Sano

Glucose filtered in the glomerulus is actively reabsorbed by sodium-glucose co-transporter 2 (SGLT2) in proximal tubular epithelial cells (PTEC) and passively returned to the blood via glucose transporter 2 (GLUT2). Healthy PTEC rely primarily on fatty acid beta-oxidation (FAO) for energy. In phase III trials, SGLT2 inhibitors improved outcomes in diabetic kidney disease (DKD). Tubulointerstitial renal fibrosis due to altered metabolic reprogramming of PTEC might be at the root of the pathogenesis of DKD. Here, we investigated the molecular mechanism of SGLT2 inhibitors’ renoprotective effect by examining transcriptional activity of Spp1, which encodes osteopontin, a key mediator of tubulointerstitial renal fibrosis. With primary cultured PTEC from Spp1-enhanced green fluorescent protein knock-in mice, we proved that in high-glucose conditions, increased SGLT2- and GLUT-mediated glucose uptake is causatively involved in aberrant activation of the glycolytic pathway in PTEC, thereby increasing mitochondrial reactive oxygen species (ROS) formation and transcriptional activation of Spp1. FAO activation did not play a direct role in these processes, but elevated expression of a tubular-specific enzyme, myo-inositol oxygenase, was at least partly involved. Notably, canagliflozin blocked overexpression of myo-inositol oxygenase. In conclusion, SGLT2 inhibitors exerted renoprotective effects by inhibiting aberrant glycolytic metabolism and mitochondrial ROS formation in PTEC in high-glucose conditions.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150897 ◽  
Author(s):  
Jun Watanabe ◽  
Yumi Takiyama ◽  
Jun Honjyo ◽  
Yuichi Makino ◽  
Yukihiro Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document