3T multiparametric MRI of the prostate: Does intravoxel incoherent motion diffusion imaging have a role in the detection and stratification of prostate cancer in the peripheral zone?

2016 ◽  
Vol 85 (4) ◽  
pp. 790-794 ◽  
Author(s):  
Mariacristina Valerio ◽  
Chiara Zini ◽  
Davide Fierro ◽  
Francesca Giura ◽  
Anna Colarieti ◽  
...  
Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1785
Author(s):  
Yongkai Liu ◽  
Haoxin Zheng ◽  
Zhengrong Liang ◽  
Qi Miao ◽  
Wayne G. Brisbane ◽  
...  

The current standardized scheme for interpreting MRI requires a high level of expertise and exhibits a significant degree of inter-reader and intra-reader variability. An automated prostate cancer (PCa) classification can improve the ability of MRI to assess the spectrum of PCa. The purpose of the study was to evaluate the performance of a texture-based deep learning model (Textured-DL) for differentiating between clinically significant PCa (csPCa) and non-csPCa and to compare the Textured-DL with Prostate Imaging Reporting and Data System (PI-RADS)-based classification (PI-RADS-CLA), where a threshold of PI-RADS ≥ 4, representing highly suspicious lesions for csPCa, was applied. The study cohort included 402 patients (60% (n = 239) of patients for training, 10% (n = 42) for validation, and 30% (n = 121) for testing) with 3T multiparametric MRI matched with whole-mount histopathology after radical prostatectomy. For a given suspicious prostate lesion, the volumetric patches of T2-Weighted MRI and apparent diffusion coefficient images were cropped and used as the input to Textured-DL, consisting of a 3D gray-level co-occurrence matrix extractor and a CNN. PI-RADS-CLA by an expert reader served as a baseline to compare classification performance with Textured-DL in differentiating csPCa from non-csPCa. Sensitivity and specificity comparisons were performed using Mcnemar’s test. Bootstrapping with 1000 samples was performed to estimate the 95% confidence interval (CI) for AUC. CIs of sensitivity and specificity were calculated by the Wald method. The Textured-DL model achieved an AUC of 0.85 (CI [0.79, 0.91]), which was significantly higher than the PI-RADS-CLA (AUC of 0.73 (CI [0.65, 0.80]); p < 0.05) for PCa classification, and the specificity was significantly different between Textured-DL and PI-RADS-CLA (0.70 (CI [0.59, 0.82]) vs. 0.47 (CI [0.35, 0.59]); p < 0.05). In sub-analyses, Textured-DL demonstrated significantly higher specificities in the peripheral zone (PZ) and solitary tumor lesions compared to the PI-RADS-CLA (0.78 (CI [0.66, 0.90]) vs. 0.42 (CI [0.28, 0.57]); 0.75 (CI [0.54, 0.96]) vs. 0.38 [0.14, 0.61]; all p values < 0.05). Moreover, Textured-DL demonstrated a high negative predictive value of 92% while maintaining a high positive predictive value of 58% among the lesions with a PI-RADS score of 3. In conclusion, the Textured-DL model was superior to the PI-RADS-CLA in the classification of PCa. In addition, Textured-DL demonstrated superior performance in the specificities for the peripheral zone and solitary tumors compared with PI-RADS-based risk assessment.


2015 ◽  
Vol 50 (8) ◽  
pp. 483-489 ◽  
Author(s):  
Matthias C. Roethke ◽  
Tristan A. Kuder ◽  
Timur H. Kuru ◽  
Michael Fenchel ◽  
Boris A. Hadaschik ◽  
...  

Author(s):  
Nicolai Alexander Huebner ◽  
Stephan Korn ◽  
Irene Resch ◽  
Bernhard Grubmüller ◽  
Tobias Gross ◽  
...  

Abstract Objectives To assess the visibility of clinically significant prostate cancer (PCA) lesions on the sequences multiparametric MRI of the prostate (mpMRI) and to evaluate whether the addition of dynamic contrast–enhanced imaging (DCE) improves the overall visibility. Methods We retrospectively evaluated multiparametric MRI images of 119 lesions in 111 patients with biopsy-proven clinically significant PCA. Three readers assigned visual grading scores for visibility on each sequence, and a visual grading characteristic analysis was performed. Linear regression was used to explore which factors contributed to visibility in individual sequences. Results The visibility of lesions was significantly better with mpMRI when compared to biparametric MRI in visual grading characteristic (VGC) analysis, with an AUCVGC of 0.62 (95% CI 0.55–0.69; p < 0.001). This benefit was seen across all readers. Multivariable linear regression revealed that a location in the peripheral zone was associated with better visibility on T2-weighted imaging (T2w). A higher Prostate Imaging-Reporting and Data System (PI-RADS) score was associated with better visibility on both diffusion-weighted imaging (DWI) and DCE. Increased lesion size was associated with better visibility on all sequences. Conclusions Visibility of clinically significant PCA is improved by using mpMRI. DCE and DWI images independently improve lesion visibility compared to T2w images alone. Further research into the potential of DCE to impact on clinical decision-making is suggested. Key Points • DCE and DWI images independently improve clinically significant prostate cancer lesion visibility compared to T2w images alone. • Multiparametric MRI (DCE, DWI, T2w) achieved significantly higher visibility scores than biparametric MRI (DWI, T2w). • Location in the transition zone is associated with poor visibility on T2w, while it did not affect visibility on DWI or DCE.


2020 ◽  
Vol 21 (10) ◽  
pp. 179-191
Author(s):  
Neda Gholizadeh ◽  
John Simpson ◽  
Saadallah Ramadan ◽  
Jim Denham ◽  
Peter Lau ◽  
...  

2012 ◽  
Vol 57 (12) ◽  
pp. 3833-3851 ◽  
Author(s):  
Emilie Niaf ◽  
Olivier Rouvière ◽  
Florence Mège-Lechevallier ◽  
Flavie Bratan ◽  
Carole Lartizien

2020 ◽  
Vol 30 (12) ◽  
pp. 6757-6769 ◽  
Author(s):  
Simon Bernatz ◽  
Jörg Ackermann ◽  
Philipp Mandel ◽  
Benjamin Kaltenbach ◽  
Yauheniya Zhdanovich ◽  
...  

Abstract Objectives To analyze the performance of radiological assessment categories and quantitative computational analysis of apparent diffusion coefficient (ADC) maps using variant machine learning algorithms to differentiate clinically significant versus insignificant prostate cancer (PCa). Methods Retrospectively, 73 patients were included in the study. The patients (mean age, 66.3 ± 7.6 years) were examined with multiparametric MRI (mpMRI) prior to radical prostatectomy (n = 33) or targeted biopsy (n = 40). The index lesion was annotated in MRI ADC and the equivalent histologic slides according to the highest Gleason Grade Group (GrG). Volumes of interest (VOIs) were determined for each lesion and normal-appearing peripheral zone. VOIs were processed by radiomic analysis. For the classification of lesions according to their clinical significance (GrG ≥ 3), principal component (PC) analysis, univariate analysis (UA) with consecutive support vector machines, neural networks, and random forest analysis were performed. Results PC analysis discriminated between benign and malignant prostate tissue. PC evaluation yielded no stratification of PCa lesions according to their clinical significance, but UA revealed differences in clinical assessment categories and radiomic features. We trained three classification models with fifteen feature subsets. We identified a subset of shape features which improved the diagnostic accuracy of the clinical assessment categories (maximum increase in diagnostic accuracy ΔAUC = + 0.05, p < 0.001) while also identifying combinations of features and models which reduced overall accuracy. Conclusions The impact of radiomic features to differentiate PCa lesions according to their clinical significance remains controversial. It depends on feature selection and the employed machine learning algorithms. It can result in improvement or reduction of diagnostic performance. Key Points • Quantitative imaging features differ between normal and malignant tissue of the peripheral zone in prostate cancer. • Radiomic feature analysis of clinical routine multiparametric MRI has the potential to improve the stratification of clinically significant versus insignificant prostate cancer lesions in the peripheral zone. • Certain combinations of standard multiparametric MRI reporting and assessment categories with feature subsets and machine learning algorithms reduced the diagnostic performance over standard clinical assessment categories alone.


2016 ◽  
Vol 206 (3) ◽  
pp. 559-565 ◽  
Author(s):  
Stephanie M. McCann ◽  
Yulei Jiang ◽  
Xiaobing Fan ◽  
Jianing Wang ◽  
Tatjana Antic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document