scholarly journals A temporal downscaling approach for sub-daily gridded extreme rainfall intensity estimation under climate change

2021 ◽  
Vol 35 ◽  
pp. 100811
Author(s):  
Ana I. Requena ◽  
Truong-Huy Nguyen ◽  
Donald H. Burn ◽  
Paulin Coulibaly ◽  
Van-Thanh-Van Nguyen
2012 ◽  
Vol 3 (3) ◽  
pp. 185-196 ◽  
Author(s):  
Jianting Zhu ◽  
Mark C. Stone ◽  
William Forsee

Potential changes in climate are expected to lead to future changes in the characteristics of precipitation events, including extreme rainfall intensity in most regions. In order for government agencies and design engineers to incorporate these trends and future changes into assessment and design processes, tools for planning and design should be capable of considering nonstationary climate conditions. In this work, potential changes are investigated in intensity–duration–frequency (IDF) curves, which are often used for assessment of extreme rainfall events, using historic data and future climate projections. An approach is proposed for calculating IDF curves that incorporates projected changes in rainfall intensity at a range of locations in the United States. The results elucidate strong regional patterns in projected changes in rainfall intensity, which are influenced by the rainfall characteristics of the region. Therefore, impacts of climate change on extreme hydrologic events will be highly regional and thus such assessments should be performed for specific project locations.


Author(s):  
Ricardo Dalagnol ◽  
Carolina B. Gramcianinov ◽  
Natália Machado Crespo ◽  
Rafael Luiz ◽  
Julio Barboza Chiquetto ◽  
...  

2010 ◽  
Vol 11 (1) ◽  
pp. 26-45 ◽  
Author(s):  
Nityanand Singh ◽  
Ashwini Ranade

Abstract Characteristics of wet spells (WSs) and intervening dry spells (DSs) are extremely useful for water-related sectors. The information takes on greater significance in the wake of global climate change and climate-change scenario projections. The features of 40 parameters of the rainfall time distribution as well as their extremes have been studied for two wet and dry spells for 19 subregions across India using gridded daily rainfall available on 1° latitude × 1° longitude spatial resolution for the period 1951–2007. In a low-frequency-mode, intra-annual rainfall variation, WS (DS) is identified as a “continuous period with daily rainfall equal to or greater than (less than) daily mean rainfall (DMR) of climatological monsoon period over the area of interest.” The DMR shows significant spatial variation from 2.6 mm day−1 over the extreme southeast peninsula (ESEP) to 20.2 mm day−1 over the southern-central west coast (SCWC). Climatologically, the number of WSs (DSs) decreases from 11 (10) over the extreme south peninsula to 4 (3) over northwestern India as a result of a decrease in tropical and oceanic influences. The total duration of WSs (DSs) decreases from 101 (173) to 45 (29) days, and the duration of individual WS (DS) from 12 (18) to 7 (11) days following similar spatial patterns. Broadly, the total rainfall of wet and dry spells, and rainfall amount and rainfall intensity of actual and extreme wet and dry spells, are high over orographic regions and low over the peninsula, Indo-Gangetic plains, and northwest dry province. The rainfall due to WSs (DSs) contributes ∼68% (∼17%) to the respective annual total. The start of the first wet spell is earlier (19 March) over ESEP and later (22 June) over northwestern India, and the end of the last wet spell occurs in reverse, that is, earlier (12 September) from northwestern India and later (16 December) from ESEP. In recent years/decades, actual and extreme WSs are slightly shorter and their rainfall intensity higher over a majority of the subregions, whereas actual and extreme DSs are slightly (not significantly) longer and their rainfall intensity weaker. There is a tendency for the first WS to start approximately six days earlier across the country and the last WS to end approximately two days earlier, giving rise to longer duration of rainfall activities by approximately four days. However, a spatially coherent, robust, long-term trend (1951–2007) is not seen in any of the 40 WS/DS parameters examined in the present study.


Author(s):  
С.Н. Волков ◽  
А.И. Житенев ◽  
О.Н. Рублевская ◽  
Ю.А. Курганов ◽  
И.Г. Костенко ◽  
...  

Анализ официальных источников информации показывает, что распределение экстремальных дождей по территории происходит с учетом микроклиматических особенностей ее местности. Для оценки степени достоверности таких закономерностей в пределах мегаполисов проведены экспериментальные исследования, в которых в качестве экспериментальной базы принята система водоотведения Санкт-Петербурга, в качестве средств измерения – сеть из 34 автоматических осадкомеров, осуществляющих записи с интервалом 5 минут, в качестве экспериментальной информации – база данных результатов измерений в течение шести лет. В результате исследований установлено, что в городской среде формируется микроклимат, отличающийся от климата за ее пределами. Кроме того, в масштабах мегаполисов имеются микроклиматические зоны, в которых зависимости интенсивностей осадков от их повторяемости могут существенно отличаться. При этом отличия начинают проявляться при периодах р однократного превышения расчетной интенсивности дождей от 1,5–2 лет, а при их меньших значениях отличия не выявлены. Полученный результат согласуется с данными исследований других авторов, экспериментально установивших, что количество экстремальных дождей увеличивается в тех районах мегаполисов, как правило, исторических,в которых меньше зеленых насаждений и, соответственно, более высокая степень перегрева поверхности в летнее время. The analysis of official data resources shows that the distribution of extreme rainfall over the territory is carried out with account of the microclimatic features of the area. To estimate the degree of reliability of such patterns within megalopolises, experimental studies were carried out, where the wastewater disposal system of St. Petersburg was assumed as an experimental base; a network of 34 automatic rain gauges recording with an interval of 5 minutes was assumed as a measuring instrument, and a base was used as experimental information, i. e., a measurement data base for six years. As a result of the research, it has been established that a microclimate is formed in the urban environment that differs from the climate outside it. Besides, on a megacity scale, there are microclimatic zones where the dependences of precipitation intensities on their frequency can differ significantly. In this case, the differences begin to manifest at periods p of one-time excess of the calculated rainfall intensity from 1.5–2 years, whereas at lower values, no differences have been found. The result obtained is consistent with the research data obtained by other authors, who experimentally established that the amount of extreme rainfall increased in those areas of megacities, as a rule, historical ones, where fewer green spaces are located, and, accordingly, a higher degree of surface overheating in summer is recorded.


2008 ◽  
Vol 14 (7) ◽  
pp. 1600-1608 ◽  
Author(s):  
PHILIP A. FAY ◽  
DAWN M. KAUFMAN ◽  
JESSE B. NIPPERT ◽  
JONATHAN D. CARLISLE ◽  
CHRISTOPHER W. HARPER

2021 ◽  
Vol 16 (10) ◽  
pp. 104023
Author(s):  
Cornelia Klein ◽  
Lawrence S Jackson ◽  
Douglas J Parker ◽  
John H Marsham ◽  
Christopher M Taylor ◽  
...  

Author(s):  
Hildegart Ahumada ◽  
Magdalena Cornejo

Soybean yields are often indicated as an interesting case of climate change mitigation due to the beneficial effects of CO2 fertilization. In this paper we econometrically study this effect using a time series model of yields in a multivariate framework for a main producer and exporter of this commodity, Argentina. We have to deal with the upward behavior of soybean yields trying to identify which variables are the long-run determinants responsible of its observed trend. With this aim we adopt a partial system approach to estimate subsets of long-run relationships due to climate, technological and economic factors. Using an automatic selection algorithm we evaluate encompassing of the different obtained equilibrium correction models. We found that only technological innovations due to new crop practices and the use of modified seeds explain soybean yield in the long run. Regarding short run determinants we found positive effects associated with the use of standard fertilizers and also from changes in atmospheric CO2 concentration which would suggest a mitigation effect from global warming. However, we also found negative climate effects from periods of droughts associated with La Niña episodes, high temperatures and extreme rainfall events during the growing season of the plant.


Sign in / Sign up

Export Citation Format

Share Document