Copy-number profiles from circulating cell-free DNA as a potential biomarker in melanoma

2017 ◽  
Vol 43 (11) ◽  
pp. 2225
Author(s):  
Shobha Silva ◽  
Angela Cox ◽  
Dawn Teare ◽  
James Bradford ◽  
Ian Brock ◽  
...  
2018 ◽  
Vol 64 (9) ◽  
pp. 1338-1346 ◽  
Author(s):  
Shobha Silva ◽  
Sarah Danson ◽  
Dawn Teare ◽  
Fiona Taylor ◽  
James Bradford ◽  
...  

Abstract BACKGROUND A substantial number of melanoma patients develop local or metastatic recurrence, and early detection of these is vital to maximise benefit from new therapies such as inhibitors of BRAF and MEK, or immune checkpoints. This study explored the use of novel DNA copy-number profiles in circulating cell-free DNA (cfDNA) as a potential biomarker of active disease and survival. PATIENTS AND METHODS Melanoma patients were recruited from oncology and dermatology clinics in Sheffield, UK, and cfDNA was isolated from stored blood plasma. Using low-coverage whole-genome sequencing, we created copy-number profiles from cfDNA from 83 melanoma patients, 44 of whom had active disease. We used scoring algorithms to summarize copy-number aberrations and investigated their utility in multivariable logistic and Cox regression analyses. RESULTS The copy-number aberration score (CNAS) was a good discriminator of active disease (odds ratio, 3.1; 95% CI, 1.5–6.2; P = 0.002), and CNAS above or below the 75th percentile remained a significant discriminator in multivariable analysis for active disease (P = 0.019, with area under ROC curve of 0.90). Additionally, mortality was higher in those with CNASs above the 75th percentile than in those with lower scores (HR, 3.4; 95% CI, 1.5–7.9; P = 0.005), adjusting for stage of disease, disease status (active or resected), BRAF status, and cfDNA concentration. CONCLUSIONS This study demonstrates the potential of a de novo approach utilizing copy-number profiling of cfDNA as a biomarker of active disease and survival in melanoma. Longitudinal analysis of copy-number profiles as an early marker of relapsed disease is warranted.


2018 ◽  
Vol 44 ◽  
pp. S26-S27
Author(s):  
Shobha Silva ◽  
Angela Cox ◽  
Dawn Teare ◽  
James Bradford ◽  
Ian Brock ◽  
...  

2017 ◽  
Vol 26 (4) ◽  
pp. 395-401 ◽  
Author(s):  
Jagdeep Singh Bhangu ◽  
Hossein Taghizadeh ◽  
Tamara Braunschmid ◽  
Thomas Bachleitner-Hofmann ◽  
Christine Mannhalter

2018 ◽  
Vol 129 (3) ◽  
pp. 575-581 ◽  
Author(s):  
Kerstin Zwirner ◽  
Franz J. Hilke ◽  
German Demidov ◽  
Stephan Ossowski ◽  
Cihan Gani ◽  
...  

2017 ◽  
Vol 23 (20) ◽  
pp. 6305-6314 ◽  
Author(s):  
Nadine Van Roy ◽  
Malaïka Van Der Linden ◽  
Björn Menten ◽  
Annelies Dheedene ◽  
Charlotte Vandeputte ◽  
...  

2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 495-495 ◽  
Author(s):  
Armin Soave ◽  
Heidi Schwarzenbach ◽  
Malte Vetterlein ◽  
Jessica Rührup ◽  
Oliver Engel ◽  
...  

495 Background: To investigate detection and oncological impact of circulating tumor cells (CTC) in bladder cancer patients with presence of copy number variations (CNV) of circulating cell-free DNA (cfDNA) treated with radical cystectomy (RC). Methods: Secondary analysis of 85 bladder cancer patients, who were prospectively enrolled and treated with RC at our institution between 2011 and 2014. Blood samples were obtained preoperatively. For CTC analysis, blood was analyzed with the CellSearch system (Janssen). cfDNA was extracted from serum using the PME DNA Extraction kit (Analytik Jena). Multiplex ligation-dependent probe amplification (MLPA) was carried out to identify CNV of cfDNA. In a single reaction MLPA allows analyzing CNV in 43 chromosomal regions containing 37 genes. Results: MLPA was suitable for characterization of CNV in 72 patients (84.7%). Data on CTC was available for 45 of these patients (62.5%). In total, 7 patients (15.6%) had CTC with a median CTC count of one (IQR: 1-3). In 21 patients (46.7%), one to 6 deleted or amplified chromosomal regions were detected with a median CNV count of 2 (IQR: 1-2). Overall, most changes were located in the genes CDH1, RIPK2 and ZFHX3 in 8 patients (17.8%), 6 patients (13.3%) and 5 patients (11.1%). Chromosomal aberrations were most frequently found on chromosome 8 in 8 patients (17.8%). Overall, presence of CTC was not associated with CNV status. However, presence of CTC was associated with copy number losses in miR-15a (p = 0.011). Patients with CTC had reduced recurrence-free survival (RFS) compared to patients without CTC (p = 0.012). In combined Kaplan-Meier analysis, patients with CTC plus presence of CNV had reduced cancer-specific survival (CSS) and RFS compared to patients without CTC but with presence of CNV (p≤0.035). In addition, patients with CTC plus presence of CNV had reduced RFS compared to patients without CTC and without presence of CNV (p = 0.028). Conclusions: CTC and CNV of various genes are detectable in peripheral blood of bladder cancer patients. The presence of CTC seems to be associated with CNV of specific genes. CTC have a negative impact on survival in patients with and without presence of CNV.


2019 ◽  
Vol 65 (5) ◽  
pp. 623-633 ◽  
Author(s):  
Romain Meddeb ◽  
Ekaterina Pisareva ◽  
Alain R Thierry

Abstract Circulating cell-free DNA (cfDNA) isolated from blood has been identified as a potential biomarker in numerous fields, and has been the object of intensive research over the past decade, although its original discovery dates back 60 years. While it is already used routinely in commercial and clinical practice in oncology and prenatal testing, other potential applications have emerged, including for diabetes, cardiovascular diseases, organ transplantation, autoimmune diseases, sepsis, trauma, and sport management. As with the discovery and development of any biomarker, preanalytical requirements and documentation are as important as analytical requirements. Except for the case of noninvasive prenatal testing and prenatal diagnosis, the implementation of cfDNA in a clinical setting remains limited because of the lack of standardization of cfDNA analysis. In particular, only a few attempts have been made to collect and pool scientific data on the relevant preanalytical factors, and no standard operating procedure has yet been set. For this report, we have performed a thorough and systematic search via MEDLINE® for relevant preanalytical variables and patient factors. These form the basis of the guidelines we propose for analyzing nuclear cfDNA.


2018 ◽  
Vol 17 (2) ◽  
pp. e114-e115
Author(s):  
M. Uemura ◽  
Y. Yamamoto ◽  
K. Nakano ◽  
Y. Hayashi ◽  
C. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document