scholarly journals An electrochemical sensor concept for the detection of bacterial virulence factors from Staphylococcus aureus and Pseudomonas aeruginosa

2015 ◽  
Vol 59 ◽  
pp. 104-108 ◽  
Author(s):  
Naing Tun Thet ◽  
A. Toby A. Jenkins
2017 ◽  
Vol 38 (03) ◽  
pp. 346-358 ◽  
Author(s):  
Bruno François ◽  
Charles-Edouard Luyt ◽  
C. Stover ◽  
Jeffery Brubaker ◽  
Jean Chastre ◽  
...  

AbstractMorbidity, mortality, and economic burden of nosocomial pneumonia caused by Staphylococcus aureus and Pseudomonas aeruginosa remain high in mechanically ventilated and hospitalized patients despite the use of empirical antibiotic therapy or antibiotics against specific classes of pathogens and procedures to reduce nosocomial infections in hospital settings. Newer agents that neutralize or inhibit specific S. aureus or P. aeruginosa virulence factors may eliminate or reduce the risk for developing pneumonia before or during mechanical ventilation and may improve patient outcomes through mechanisms that differ from those of antibiotics. In this article, we review the types, mechanisms of action, potential advantages, and stage of development of antivirulence agents (AVAs) that hold promise as alternative preventive or interventional therapies against S. aureus– and P. aeruginosa–associated nosocomial pneumonias. We also present and discuss challenges to the effective utilization of AVAs separately from or in addition to antibiotics and the design of clinical trials and meaningful study end points.


2019 ◽  
Vol 10 (9) ◽  
pp. 5759-5767
Author(s):  
Wan-Ting Lee ◽  
Boon-Khai Tan ◽  
Su-Anne Eng ◽  
Gan Chee Yuen ◽  
Kit Lam Chan ◽  
...  

A strategy to circumvent the problem of multidrug resistant pathogens is the discovery of anti-infectives targeting bacterial virulence or host immunity.


2019 ◽  
Author(s):  
Eryn E. Bernardy ◽  
Robert A. Petit ◽  
Vishnu Raghuram ◽  
Ashley M. Alexander ◽  
Timothy D. Read ◽  
...  

AbstractPseudomonas aeruginosa and Staphylococcus aureus are the most common bacteria that infect the respiratory tract of individuals with the genetic disease cystic fibrosis (CF); in fact, S. aureus has recently overtaken P. aeruginosa to become the most common. Substantial research has been performed on the epidemiology of S. aureus in CF; however, there appears to be a gap in knowledge in regard to the pathogenesis of S. aureus in the context of CF lung infections. Most studies have focused on a few S. aureus isolates, often exclusively laboratory adapted strains, and how they are killed by P. aeruginosa. Because of this, little is known about the diversity of S. aureus CF lung isolates in both virulence and interaction with P. aeruginosa. To begin to address this gap in knowledge, we recently sequenced 65 clinical S. aureus isolates from the Emory CF Biospecimen Registry and Boston Children’s Hospital, including the reference isolate JE2, a USA300 strain. Here, we analyzed antibiotic resistance genotypes, sequence type, clonal complex, spa type, and agr type of these isolates. We hypothesized that major virulence phenotypes of S. aureus that may be associated with CF lung infections, namely toxin production and mucoid phenotype, would be retained in these isolates. To test our hypothesis, we plated on specific agars and found that most isolates can hemolyze both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), consistent with virulence retention in CF lung isolates. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus CF isolates, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.Author SummaryStaphylococcus aureus is now the most frequently detected pathogen in the lungs of individuals who have cystic fibrosis (CF), followed closely by Pseudomonas aeruginosa. When these two pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus. Here we present an in-depth study of 64 S. aureus CF clinical isolates where we investigated genetic diversity utilizing whole genome sequencing, virulence phenotypes, and interactions with P. aeruginosa. We have found that S. aureus isolated from the CF lung are phylogenetically diverse, most retain known virulence factors, and they vary in interactions with P. aeruginosa from highly sensitive to completely tolerant. Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.


2009 ◽  
Vol 5 (4) ◽  
pp. e1000382 ◽  
Author(s):  
Jennifer M. Bomberger ◽  
Daniel P. MacEachran ◽  
Bonita A. Coutermarsh ◽  
Siying Ye ◽  
George A. O'Toole ◽  
...  

2020 ◽  
Vol 98 (1) ◽  
pp. 117-127
Author(s):  
Macrina Pérez-López ◽  
María Flores-Cruz ◽  
Mariano Martínez-Vázquez ◽  
Ramón Marcos Soto Hernández ◽  
Rodolfo García-Contreras ◽  
...  

Background: Using molecules that inhibit bacterial virulence is a potential strategy to fight infections, with the advantage that, in contrast to bactericidal compounds, they do not induce resistance. Several compounds with anti-virulence properties have been identified in plants, however, they represent a small portion of the total diversity, and in Mexico there are still few studies on this matter.  Hypothesis: Extracts of species of the Tillandsia genus inhibit the expression of diverse virulence factors without affecting the bacterial growth.  Studied species: Tillandsia recurvata (L.) L., T. schiedeana Steud. and T. fasciculata Sw.  Study site and date: These species were collected in December 2016 in the municipalities of Ixtlahuaca and Santo Tomás de los Plátanos, State of Mexico. Methods: The ability of dichloromethane (CH2Cl2) and methanol (CH3OH) extracts to inhibit production of violacein in Chromobacterium violaceum was evaluated, as well as the virulence factors regulated by quorum sensing, motility and biofilm in Pseudomonas aeruginosa. In addition, the bioactive fractions obtained were partially identified by 1H NMR. Results: CH2Cl2 and CH3OH extracts reduced violacein production from 43 to 85 %, but only those from CH2Cl2 reduced protease activity, biofilm formation and swarming. Interestingly, CH3OH extracts stimulated the formation of biofilms by up to 37 %. Presence of terpenes and phenolic compounds in these species was confirmed. In T. schiedeana glycosylated compounds and cycloartane-type triterpenes were identified. Conclusion: The species of Tillandsia show anti-virulence activity, mainly on factors related to adhesion and dispersion in Pseudomonas aeruginosa.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Eryn E. Bernardy ◽  
Robert A. Petit ◽  
Vishnu Raghuram ◽  
Ashley M. Alexander ◽  
Timothy D. Read ◽  
...  

ABSTRACT Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa. Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa. To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health. IMPORTANCE Staphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa. When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus. Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa. We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253445
Author(s):  
Chee-Hoo Yip ◽  
Sobina Mahalingam ◽  
Kiew-Lian Wan ◽  
Sheila Nathan

Prodigiosin, a red linear tripyrrole pigment, has long been recognised for its antimicrobial property. However, the physiological contribution of prodigiosin to the survival of its producing hosts still remains undefined. Hence, the aim of this study was to investigate the biological role of prodigiosin from Serratia marcescens, particularly in microbial competition through its antimicrobial activity, towards the growth and secreted virulence factors of four clinical pathogenic bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa) as well as Staphylococcus aureus and Escherichia coli. Prodigiosin was first extracted from S. marcescens and its purity confirmed by absorption spectrum, high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). The extracted prodigiosin was antagonistic towards all the tested bacteria. A disc-diffusion assay showed that prodigiosin is more selective towards Gram-positive bacteria and inhibited the growth of MRSA, S. aureus and E. faecalis and Gram-negative E. coli. A minimum inhibitory concentration of 10 μg/μL of prodigiosin was required to inhibit the growth of S. aureus, E. coli and E. faecalis whereas > 10 μg/μL was required to inhibit MRSA growth. We further assessed the effect of prodigiosin towards bacterial virulence factors such as haemolysin and production of protease as well as on biofilm formation. Prodigiosin did not inhibit haemolysis activity of clinically associated bacteria but was able to reduce protease activity for MRSA, E. coli and E. faecalis as well as decrease E. faecalis, Salmonella Typhimurium and E. coli biofilm formation. Results of this study show that in addition to its role in inhibiting bacterial growth, prodigiosin also inhibits the bacterial virulence factor protease production and biofilm formation, two strategies employed by bacteria in response to microbial competition. As clinical pathogens were more resistant to prodigiosin, we propose that prodigiosin is physiologically important for S. marcescens to compete against other bacteria in its natural soil and surface water environments.


Sign in / Sign up

Export Citation Format

Share Document