Cathodic protection of carbon steel in natural seawater: Effect of sunlight radiation

2009 ◽  
Vol 54 (26) ◽  
pp. 6472-6478 ◽  
Author(s):  
Alessandro Benedetti ◽  
Luca Magagnin ◽  
Francesca Passaretti ◽  
Elisabetta Chelossi ◽  
Marco Faimali ◽  
...  
CORROSION ◽  
10.5006/3552 ◽  
2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Erwan Diler ◽  
Nicolas Larché ◽  
Dominique Thierry

Many parameters may influence the corrosion and the cathodic protection current demand in natural seawater. These are potential, temperature, dissolved oxygen content, biofilm and fouling activity, hydrostatic pressure, and calcareous deposit formation. In this study, the influence of the exposure depth on the corrosion, cathodic protection current demand, and nature of the calcareous deposit formed on carbon steel was investigated at 1,020 m and 2,020 m depth. For this purpose, a set of coupons, cathodic protection, and environmental sensors were exposed in Azores in the Atlantic Ocean for 11 months. The higher corrosion rate and current density observed at 1,020 m can be explained by the higher temperature and oxygen diffusion. The cathodic current demand decrease with time can be attributed to the calcareous deposit formation. The current densities after 11 months are in agreement with the literature with 143 mA/m2 and 124 mA/m2 at 1,020 m and 2,020 m depth. Calcareous deposits formed, characterized by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy/electron dispersive x-ray spectroscopy, highlight (i) the favored formation of calcite and hydrocalcite at the expense of aragonite in deep and cold water, (ii) the presence of a thin deposit after 11 months, (iii) the decrease of the Ca/Mg ratio with immersion depth, (iv) the presence of CaMgCO3 compounds, and (v) a higher decrease of the current demand with time in deep water, suggesting the formation of a more protective deposit. The capacity for aluminum-gallium and aluminum-indium galvanic anode were in agreement with the literature for long-term exposures.


2020 ◽  
Vol 65 (1) ◽  
pp. 77-82
Author(s):  
Simona CAPRARESCU ◽  
◽  
Violeta PURCAR ◽  
Cristina MODROGAN ◽  
◽  
...  

2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Anna Maria Bell ◽  
Marcus von der Au ◽  
Julia Regnery ◽  
Matthias Schmid ◽  
Björn Meermann ◽  
...  

Abstract Background Cathodic protection by sacrificial anodes composed of aluminum-zinc-indium alloys is often applied to protect offshore support structures of wind turbines from corrosion. Given the considerable growth of renewable energies and thus offshore wind farms in Germany over the last decade, increasing levels of aluminum, indium and zinc are released to the marine environment. Although these metals are ecotoxicologically well-studied, data regarding their impact on marine organisms, especially sediment-dwelling species, as well as possible ecotoxicological effects of galvanic anodes are scarce. To investigate possible ecotoxicological effects to the marine environment, the diatom Phaedactylum tricornutum, the bacterium Aliivibrio fischeri and the amphipod Corophium volutator were exposed to dissolved galvanic anodes and solutions of aluminum and zinc, respectively, in standardized laboratory tests using natural seawater. In addition to acute toxicological effects, the uptake of these elements by C. volutator was investigated. Results The investigated anode material caused no acute toxicity to the tested bacteria and only weak but significant effects on algal growth. In case of the amphipods, the single elements Al and Zn showed significant effects only at the highest tested concentrations. Moreover, an accumulation of Al and In was observed in the crustacea species. Conclusions Overall, the findings of this study indicated no direct environmental impact on the tested marine organisms by the use of galvanic anodes for cathodic protection. However, the accumulation of metals in, e.g., crustaceans might enhance their trophic transfer within the marine food web.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yunze Xu ◽  
Qiliang Zhang ◽  
Qipiao Zhou ◽  
Shan Gao ◽  
Bin Wang ◽  
...  

AbstractIn this work, flow accelerated corrosion (FAC) and erosion−corrosion of marine carbon steel in natural seawater were electrochemically studied using a submerged impingement jet system. Results show that the formation of a relatively compact rust layer in flowing natural seawater would lead to the FAC pattern change from ‘flow marks’ to pits. The increase of the flow velocity was found to have a negligible influence on the FAC rate at velocities of 5−8 m s−1. The synergy of mechanical erosion and electrochemical corrosion is the main contributor to the total steel loss under erosion−corrosion. The increase of the sand impact energy could induce the pitting damage and accelerate the steel degradation. The accumulation of the rust inside the pits could facilitate the longitudinal growth of the pits, however, the accumulated rusts retard the erosion of the pit bottom. The erosion and corrosion could work together to cause the steel peeling at the pit boundary. The steel degradation would gradually change from corrosion-dominated to erosion-dominated along with the impact energy increasing.


2008 ◽  
Vol 54 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Jizhou Duan ◽  
Suru Wu ◽  
Xiaojun Zhang ◽  
Guiqiao Huang ◽  
Min Du ◽  
...  

2020 ◽  
Author(s):  
K R DEVIKA ◽  
P MUHAMED ASHRAF

Dear Professor,<div><p>I am herewith enclosing a research paper entitled “<b>Electrochemical characteristics of BIS 2062 carbon steel under simulated ocean acidification scenario.</b>” authored by Devika KR, and me. </p> <p>The research paper highlights the behavior of carbon steel in acidified natural seawater. Ocean acidification is a burning issue under climate change. Several studies have undertaken to understand the behavior marine organisms and marine environment. No studies have initiated regarding the deterioration of materials due to ocean acidification. Large number of materials were deployed in the ocean with different objectives. These materials are under risk as the ocean acidification continues. We believe this is the first attempt to study the impact of ocean acidification on carbon steel. </p> <p>The study conducted to evaluate the impact of ocean acidification on BIS 2062 boat building steel. The results showed that the carbon steel will deteriorate 2 to 3 times higher when pH was changed from 8.05 to 7.90. The data highlights the immediate need to redesign the marine materials within 1-2 decade. The paper also highlights the possible mechanism of deterioration under different pH scenario.</p><p>Thanking you</p><p>Sincerely</p><p>ashrafp</p><br></div>


CORROSION ◽  
2007 ◽  
Vol 63 (9) ◽  
pp. 857-865 ◽  
Author(s):  
T. Okstad ◽  
Ø. Rannestad ◽  
R. Johnsen ◽  
K. Nisancioglu

Sign in / Sign up

Export Citation Format

Share Document