Electrospun Composites Made of Reduced Graphene Oxide and Activated Carbon Nanofibers for Capacitive Deionization

2014 ◽  
Vol 137 ◽  
pp. 388-394 ◽  
Author(s):  
Qiang Dong ◽  
Gang Wang ◽  
Bingqing Qian ◽  
Chao Hu ◽  
Yuwei Wang ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2117
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Javier González-Benito ◽  
Xiaolei Fan ◽  
Ahmad Fauzi Ismail

In this work, we report the preparation of polyacrylonitrile (PAN)-based activated carbon nanofibers composited with different concentrations of reduced graphene oxide (rGO/ACNF) (1%, 5%, and 10% relative to PAN weight) by a simple electrospinning method. The electrospun nanofibers (NFs) were carbonized and physically activated to obtain activated carbon nanofibers (ACNFs). Texture, surface and elemental properties of the pristine ACNFs and composites were characterized using various techniques. In comparison to pristine ACNF, the incorporation of rGO led to changes in surface and textural characteristics such as specific surface area (SBET), total pore volume (Vtotal), and micropore volume (Vmicro) of 373 m2/g, 0.22 cm3/g, and 0.15 cm3/g, respectively, which is much higher than the pristine ACNFs (e.g., SBET = 139 m2/g). The structural and morphological properties of the pristine ACNFs and their composites were studied by Raman spectroscopy and X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) respectively. Carbon dioxide (CO2) adsorption on the pristine ACNFs and rGO/ACNF composites was evaluated at different pressures (5, 10, and 15 bars) based on static volumetric adsorption. At 15 bar, the composite with 10% of rGO (rGO/ACNF0.1) that had the highest SBET, Vtotal, and Vmicro, as confirmed with BET model, exhibited the highest CO2 uptake of 58 mmol/g. These results point out that both surface and texture have a strong influence on the performance of CO2 adsorption. Interestingly, at p < 10 bar, the adsorption process of CO2 was found to be quite well fitted by pseudo-second order model (i.e., the chemisorption), whilst at 15 bar, physisorption prevailed, which was explained by the pseudo-first order model.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2064
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Juhana Jaafar ◽  
...  

Various types of activated carbon nanofibers’ (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs’ structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1090
Author(s):  
Gbenro Folaranmi ◽  
Mikhael Bechelany ◽  
Philippe Sistat ◽  
Marc Cretin ◽  
Francois Zaviska

Capacitive deionization is a second-generation water desalination technology in which porous electrodes (activated carbon materials) are used to temporarily store ions. In this technology, porous carbon used as electrodes have inherent limitations, such as low electrical conductivity, low capacitance, etc., and, as such, optimization of electrode materials by rational design to obtain hybrid electrodes is key towards improvement in desalination performance. In this work, different compositions of mixture of reduced graphene oxide (RGO) and activated carbon (from 5 to 20 wt% RGO) have been prepared and tested as electrodes for brackish water desalination. The physico-chemical and electrochemical properties of the activated carbon (AC), reduced graphene oxide (RGO), and as-prepared electrodes (AC/RGO-x) were characterized by low-temperature nitrogen adsorption measurement, scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FT-IR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Among all the composite electrodes, AC/RGO-5 (RGO at 5 wt%) possessed the highest specific capacitance (74 F g−1) and the highest maximum salt adsorption capacity (mSAC) of 8.10 mg g−1 at an operating voltage ∆E = 1.4 V. This shows that this simple approach could offer a potential way of fabricating electrodes of accentuated carbon network of an improved electronic conductivity that’s much coveted in CDI technology.


2012 ◽  
Vol 22 (31) ◽  
pp. 15556 ◽  
Author(s):  
Haibo Li ◽  
Likun Pan ◽  
Chunyang Nie ◽  
Yong Liu ◽  
Zhuo Sun

2017 ◽  
Vol 33 (9) ◽  
pp. 1279-1287 ◽  
Author(s):  
Yang Yang ◽  
Tianyu Liu ◽  
Hanyu Wang ◽  
Xun Zhu ◽  
Dingding Ye ◽  
...  

Abstract


Sign in / Sign up

Export Citation Format

Share Document