scholarly journals On the oxygen reduction reaction in phosphoric acid electrolyte: Evidence of significantly increased inhibition at steady state conditions

2016 ◽  
Vol 204 ◽  
pp. 78-83 ◽  
Author(s):  
Yu-Jia Deng ◽  
Gustav Karl Henrik Wiberg ◽  
Alessandro Zana ◽  
Matthias Arenz
2019 ◽  
Author(s):  
Rieko Kobayashi ◽  
Takafumi Ishii ◽  
Yasuo Imashiro ◽  
Jun-ichi Ozaki

Herein, we synthesized N- and P-doped carbons (PN-doped carbons) by controlled phosphoric acid treatment (CPAT) of folic acid (FA) and probed their ability to catalyze the oxygen reduction reaction at the cathode of a fuel cell. Precursors obtained by heating FA in the presence of phosphoric acid at temperatures of 400–1000 °C were further annealed at 1000 °C to afford PN-doped carbons. The extent of precursor P-doping was maximized at 700 °C, and the use of higher temperatures resulted in activation and increased porosity rather than in increased P content. The P/C atomic ratios of PN-doped carbons were well correlated with those of precursors, which indicated that CPAT was well suited for the preparation of PN-doped carbons. Carbon prepared using a CPAT temperature of 700 °C exhibited the highest oxygen reduction reaction (ORR) activity and was shown to contain –C–PO2 and –C–PO3 moieties as the major P species and pyridinic N as the major N species; moreover, no N–P bonds were detected. The presence of –C–PO2 and –C–PO3 units was concluded to decrease the work function and thus raise the Fermi level above the standard O2/H2O reduction potential, which resulted in enhanced ORR activity. Finally, CPAT was concluded to be applicable to the synthesis of PN-doped carbons from N-containing organic compounds other than FA.


2020 ◽  
Vol 264 ◽  
pp. 118507 ◽  
Author(s):  
Álvaro García ◽  
María Retuerto ◽  
Carlota Dominguez ◽  
Laura Pascual ◽  
Pilar Ferrer ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 1497-1510 ◽  
Author(s):  
Rieko Kobayashi ◽  
Takafumi Ishii ◽  
Yasuo Imashiro ◽  
Jun-ichi Ozaki

Herein, we synthesized P- and N-doped carbon materials (PN-doped carbon materials) through controlled phosphoric acid treatment (CPAT) of folic acid (FA) and probed their ability to catalyze the oxygen reduction reaction (ORR) at the cathode of a fuel cell. Precursors obtained by heating FA in the presence of phosphoric acid at temperatures of 400–1000 °C were further annealed at 1000 °C to afford PN-doped carbon materials. The extent of precursor P doping was maximized at 700 °C, and the use of higher temperatures resulted in activation and increased porosity rather than in increased P content. The P/C atomic ratios of PN-doped carbon materials correlated well with those of the precursors, which indicated that CPAT is well suited for the preparation of PN-doped carbon materials. The carbon material prepared using a CPAT temperature of 700 °C exhibited the highest ORR activity and was shown to contain –C–PO2 and –C–PO3 moieties as the major P species and pyridinic N as the major N species. Moreover, no N–P bonds were detected. It was concluded that the presence of –C–PO2 and –C–PO3 units decreases the work function and thus raises the Fermi level above the standard O2/H2O reduction potential, which resulted in enhanced ORR activity. Finally, CPAT was concluded to be applicable to the synthesis of PN-doped carbon materials from N-containing organic compounds other than FA.


ACS Catalysis ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Yu-Jia Deng ◽  
Gustav Karl Henrik Wiberg ◽  
Alessandro Zana ◽  
Shi-Gang Sun ◽  
Matthias Arenz

2018 ◽  
Vol 375 ◽  
pp. 77-81 ◽  
Author(s):  
Yang Hu ◽  
Yiliang Jiang ◽  
Jens Oluf Jensen ◽  
Lars N. Cleemann ◽  
Qingfeng Li

Author(s):  
Milena Zorko ◽  
Pedro Farinazzo Bergamo Dias Martins ◽  
Justin G. Connell ◽  
Pietro Papa Lopes ◽  
Nenad M. Markovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document