The Scrovegni Chapel: The results of over 20 years of indoor climate monitoring

2015 ◽  
Vol 95 ◽  
pp. 144-152 ◽  
Author(s):  
Cesare Bonacina ◽  
Paolo Baggio ◽  
Francesca Cappelletti ◽  
Piercarlo Romagnoni ◽  
Antonio G. Stevan
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 860
Author(s):  
Piotr Michalak

Modern buildings with new heating, ventilation and air conditioning (HVAC) systems offer possibility to fit parameters of the indoor environment to the occupants’ requirements. The present paper describes the results of measurements performed in an office room in the first Polish passive commercial office building during four months of normal operation. They were used to calculate parameters describing thermal comfort: vertical air temperature profile, floor surface temperature, predicted mean vote (PMV) and predicted percent of dissatisfied (PPD). Obtained results confirmed good thermal conditions in the analysed room. The average temperature of the floor’s surface varied from 20.6 °C to 26.2 °C. The average vertical air temperature, calculated for working days, was from 22.5 °C to 23.1 °C. The temperature difference between the floor and 5 cm below the ceiling was from −0.9 °C to 6.3 °C. The PMV index varied from 0.52 to 1.50 indicating ‘slightly warm’ sensation, in spite of ‘neutral’ reported by employees. Also measured cooling and heating energy consumption was presented. The performed measurements confirmed the ability of thermally activated building system (TABS) to keep good thermal conditions.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2827
Author(s):  
Pavla Mocová ◽  
Jitka Mohelníková

Indoor climate comfort is important for school buildings. Nowadays, this is a topical problem, especially in renovated buildings. Poorly ventilated school classrooms create improper conditions for classrooms. A post-occupancy study was performed in a school building in temperate climatic conditions. The evaluation was based on the results of long-term monitoring of the natural ventilation strategy and measurements of the carbon dioxide concentration in the school classroom’s indoor environment. The monitoring was carried out in an old school building that was constructed in the 1970s and compared to testing carried out in the same school classroom after the building was renovated in 2016. Surprisingly, the renovated classroom had a significantly higher concentration of CO2. It was found that this was due to the regulation of the heating system and the new airtight windows. The occupants of the renovated classroom have a maintained thermal comfort, but natural ventilation is rather neglected. A controlled ventilation strategy and installation of heat recovery units are recommended to solve these problems with the classroom’s indoor environment. Microbiological testing of the surfaces in school classrooms also shows the importance of fresh air and solar radiation access for indoor comfort.


2019 ◽  
Vol 9 (22) ◽  
pp. 4945 ◽  
Author(s):  
Daiqi Li ◽  
Bin Tang ◽  
Xi Lu ◽  
Quanxiang Li ◽  
Wu Chen ◽  
...  

In this study, a single firing was used to convert stabilized polyacrylonitrile (PAN) fibers and ceramic forming materials (kaolin, feldspar, and quartz) into carbon fiber/ceramic composites. For the first time, PAN carbonization and ceramic sintering were achieved simultaneously in one thermal cycle and the microscopic morphologies and physical features of the obtained carbon fiber/ceramic composites were characterized in detail. The obtained carbon fiber/ceramic composite showed comparable flexural strength as commercial ceramic tiles. Meanwhile, the composite showed exceptional electro-thermal performance based on the electro-thermal performance of the carbonized PAN fibers, which could reach 108 ℃ after 15 s, 204 ℃ after 90 s, and 292 ℃ after 450 s at 5 V (2.6 A), thereby making the ceramic composite a good candidate as an indoor climate control heater, defogger device, kettle, and other heating element.


2021 ◽  
pp. 100426
Author(s):  
Dawit Teklu Weldeslasie ◽  
Gebremariam Assres ◽  
Tor-Morten Grønli ◽  
Gheorghita Ghinea

Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 152
Author(s):  
Karin Kompatscher ◽  
Rick P. Kramer ◽  
Bart Ankersmit ◽  
Henk L. Schellen

The majority of cultural heritage is stored in archives, libraries and museum storage spaces. To reduce degradation risks, many archives adopt the use of archival boxes, among other means, to provide the necessary climate control and comply with strict legislation requirements regarding temperature and relative air humidity. A strict ambient indoor climate is assumed to provide adequate environmental conditions near objects. Guidelines and legislation provide requirements for ambient indoor climate parameters, but often do not consider other factors that influence the near-object environment, such as the use of archival boxes, airflow distribution and archival rack placement. This study aimed to provide more insight into the relation between the ambient indoor conditions in repositories and the hygrothermal conditions surrounding the collection. Comprehensive measurements were performed in a case study archive to collect ambient, local and near-object conditions. Both measurements and computational fluid dynamics (CFD) modeling were used to research temperature/relative humidity gradients and airflow distribution with a changing rack orientation, climate control strategy and supply as well as exhaust set-up in a repository. The following conclusions are presented: (i) supplying air from one air handling unit to multiple repositories on different floors leads to small temperature differences between them. Differences in ambient and local climates are noticed; (ii) archival boxes mute and delay variations in ambient conditions as expected—however, thermal radiation from the building envelope may have a large influence on the climate conditions in a box; (iii) adopting night reduction for energy conservation results in an increased influence of the external climate, with adequate insulation, this effect should be mitigated; and (iv) the specific locations of the supply air and extraction of air resulted in a vertical gradient of temperature and insufficient mixing of air, and adequate ventilation strategies should enhance sufficient air mixing in combination with the insulation of external walls, and gradient forming should be reduced.


Sign in / Sign up

Export Citation Format

Share Document