scholarly journals Simultaneous PAN Carbonization and Ceramic Sintering for Fabricating Carbon Fiber-Ceramic Composite Heaters

2019 ◽  
Vol 9 (22) ◽  
pp. 4945 ◽  
Author(s):  
Daiqi Li ◽  
Bin Tang ◽  
Xi Lu ◽  
Quanxiang Li ◽  
Wu Chen ◽  
...  

In this study, a single firing was used to convert stabilized polyacrylonitrile (PAN) fibers and ceramic forming materials (kaolin, feldspar, and quartz) into carbon fiber/ceramic composites. For the first time, PAN carbonization and ceramic sintering were achieved simultaneously in one thermal cycle and the microscopic morphologies and physical features of the obtained carbon fiber/ceramic composites were characterized in detail. The obtained carbon fiber/ceramic composite showed comparable flexural strength as commercial ceramic tiles. Meanwhile, the composite showed exceptional electro-thermal performance based on the electro-thermal performance of the carbonized PAN fibers, which could reach 108 ℃ after 15 s, 204 ℃ after 90 s, and 292 ℃ after 450 s at 5 V (2.6 A), thereby making the ceramic composite a good candidate as an indoor climate control heater, defogger device, kettle, and other heating element.

2019 ◽  
Vol 111 ◽  
pp. 01010
Author(s):  
David Hunt ◽  
Naoise Mac Suibhne ◽  
Laurentiu Dimache ◽  
David McHugh ◽  
John Lohan

The European Union’s 2020 and 2030 sustainable energy policies seek significant reductions in both energy consumption and carbon emissions. These policies demand a greater use of energy efficient technologies and a transition away from fossil fuels. This paper studies one such technology, an indoor climate control system with a reverse-flow enthalpy recovery ventilator, capable of recovering both sensible and latent heat. The thermal performance characteristics are established using an experimental facility and calculation methods defined by European Standard EN 13141-7:2010. This involves measurement of temperature, humidity, pressure and volumetric air flow rates over a range of operating conditions. Total thermal energy recovery rates ranged from 0.63 kW to 2.2 kW, with energy recovery efficiency of 72.8 % to 88.6 %. The recovery efficiency ratio, which reflects the capacity of the indoor climate control system to recover thermal energy relative to its power consumption ranged between 6.87 to 19.97. Due to the unique reverse-flow defrost function, the system demonstrates operation down to -7 °C without frost formation. These results highlight the potential that this system can make towards the EU goals of reducing energy consumption, operating costs and carbon emissions associated with indoor climate control.


1996 ◽  
Vol 11 (10) ◽  
pp. 2536-2540 ◽  
Author(s):  
Shinsuke Hoshii ◽  
Akira Kojima ◽  
Sugio Otani

Diphenylborosiloxane (PBS), an organometallic compound with Si–O–B bonds, was compounded with carbon fiber (CF) to form CF/ceramic composite. Three types of PBS with different molar ratios (Si/B) in the materials were used. On the PBS obtained, specific gravity, Si content, molecular weight, melting point, and infrared absorption spectrum were measured. On the basis of these results, structures of PBS were examined, which clarified that the PBS thus synthesized consisted of several components with different molecular weights. Mechanical properties and oxidation resistivity of the CF/ceramic composites obtained differed with the Si/B ratios of PBS. Mechanical strength of the CF/ceramic composites increased with increase of Si content of PBS. It was also found that, when PBS with high boron content was used, compact vitreous film consisting mainly of B2O3 was formed over the composite. Due to the formation of this film, oxidation resistivity of the composite was improved.


Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 152
Author(s):  
Karin Kompatscher ◽  
Rick P. Kramer ◽  
Bart Ankersmit ◽  
Henk L. Schellen

The majority of cultural heritage is stored in archives, libraries and museum storage spaces. To reduce degradation risks, many archives adopt the use of archival boxes, among other means, to provide the necessary climate control and comply with strict legislation requirements regarding temperature and relative air humidity. A strict ambient indoor climate is assumed to provide adequate environmental conditions near objects. Guidelines and legislation provide requirements for ambient indoor climate parameters, but often do not consider other factors that influence the near-object environment, such as the use of archival boxes, airflow distribution and archival rack placement. This study aimed to provide more insight into the relation between the ambient indoor conditions in repositories and the hygrothermal conditions surrounding the collection. Comprehensive measurements were performed in a case study archive to collect ambient, local and near-object conditions. Both measurements and computational fluid dynamics (CFD) modeling were used to research temperature/relative humidity gradients and airflow distribution with a changing rack orientation, climate control strategy and supply as well as exhaust set-up in a repository. The following conclusions are presented: (i) supplying air from one air handling unit to multiple repositories on different floors leads to small temperature differences between them. Differences in ambient and local climates are noticed; (ii) archival boxes mute and delay variations in ambient conditions as expected—however, thermal radiation from the building envelope may have a large influence on the climate conditions in a box; (iii) adopting night reduction for energy conservation results in an increased influence of the external climate, with adequate insulation, this effect should be mitigated; and (iv) the specific locations of the supply air and extraction of air resulted in a vertical gradient of temperature and insufficient mixing of air, and adequate ventilation strategies should enhance sufficient air mixing in combination with the insulation of external walls, and gradient forming should be reduced.


Energies ◽  
2017 ◽  
Vol 10 (9) ◽  
pp. 1368 ◽  
Author(s):  
Georgios Kontes ◽  
Georgios Giannakis ◽  
Philip Horn ◽  
Simone Steiger ◽  
Dimitrios Rovas

2019 ◽  
Vol 23 (2) ◽  
pp. 41-52 ◽  
Author(s):  
Marie Claesson ◽  
Tor Broström

Abstract The Swedish National Research programme for Energy Efficiency in historic buildings was initiated in 2006 by the Swedish Energy Agency. This article gives an overview of the programme: objectives, projects and the general results of the programme. The research programme aims to develop knowledge, methods and technical solutions that contribute to energy efficiency in historically valuable buildings without destroying or damaging the historical value of the buildings, including decoration, furnishings, interiors or equipment. The programme is not limited to listed and monumental buildings but covers a wider range of historic buildings that account for a large part of the energy use in the building sector. For one and two-family houses, around 25 % of the energy use is associated with buildings built before 1945. The same number for multifamily houses is around 15 %. The programme is currently in its third consecutive four-year-stage. Previous four-year-stages were completed in 2010 and 2014. Over time, the scope of the programme and the projects have developed from mainly dealing with indoor climate control in monumental buildings towards addressing more general issues in the much larger stock of non-listed buildings. Technical research, based on quantitative analysis, dominate throughout all three stages, however most projects have had interdisciplinary components. The results from the programme have been presented in 31 journal papers, 67 conference papers, five books and five PhD theses. The projects have also contributed to CEN standards and resulted in a number of Bachelors and Master’s theses. An equally important long-term effect of the programme is that the number of Swedish researchers in the field have increased from practically none in 2007 to 18 senior researchers and twelve PhD students from ten universities in 2014. The research programme on Energy Efficiency in historic buildings is unique in an international context. Hopefully it can serve as an example for other countries on how to address an important interdisciplinary research challenge.


2012 ◽  
Vol 727-728 ◽  
pp. 1387-1392 ◽  
Author(s):  
Luan M. Medeiros ◽  
Fernando S. Silva ◽  
Juliana Marchi ◽  
Walter Kenji Yoshito ◽  
Dolores Ribeiro Ricci Lazar ◽  
...  

Zirconium dioxide (zirconia) ceramics are known by its high strength and toughness and titanium dioxide (titania) ceramics has outstanding surface properties. The ceramic composite formed between the two oxides are expected to have advantages of both ceramics, especially when its surface area is increased by pores. In this work, ceramic composites of ZrO2-Y2O3-TiO2were synthesized by coprecipitation and rice starch was added as pore former in 10, 20 and 30 wt%. Powders were cold pressed as cylindrical pellets and sintered at 1500 °C for 01 hour and ceramics were characterized by techniques as Archimedes method for density measurements, X-ray diffraction and scanning electron microscopy. Results showed that pores are inhomogeneously distributed through ceramic bodies.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Tanmay Basak ◽  
Sankaran Durairaj

A detailed theoretical analysis has been carried out to study efficient microwave assisted heating of thermoplastic (Nylon 66) slabs via polymer-ceramic-polymer composite attached with ceramic plate at one side. The ceramic layer or plate is chosen as Al2O3 or SiC. The detailed spatial distributions of power and temperature are obtained via finite element simulation. It is found that uniform heating with enhanced processing rate may occur with specific thickness of Al2O3 composite, whereas SiC composite leads to enhanced processing rate with higher thermal runaway for thick Nylon samples attached with Al2O3 plate. SiC composite is effective due to enhanced processing rate, whereas Al2O3 is not effective due to reduced processing rate for thin samples attached with Al2O3 plate. For samples attached with SiC plate, thermal runaway is reduced by SiC composite, whereas that is not reduced by Alumina composite. Current study recommends efficient heating methodologies for thermoplastic substances with ceramic composite to achieve a higher processing rate with uniform temperature distribution.


2017 ◽  
Vol 134 ◽  
pp. 518-527 ◽  
Author(s):  
Francesca Stazi ◽  
Benedetta Gregorini ◽  
Andrea Gianangeli ◽  
Gabriele Bernardini ◽  
Enrico Quagliarini

2013 ◽  
Vol 45 (3) ◽  
pp. 331-339
Author(s):  
A. Faeghi-Nia

An Apatite-Wollastonite-Phlogopite glass-ceramic composite, was developed by sintering and crystallization of the powdered glass. The non-isothermal and isothermal sintering kinetics were studied for this glass-ceramic. Hot-stage microscopy (HSM) measurements demonstrated that it is possible to sinter and crystallize this glass-ceramic with 80% relative density. The activation energy of sintering was analyzed using previously reported model of sintering and it was obtained Q=193.83 KjmolK-1. Also it was shown that the microstructure of sample is a function of particle size distribution.


Sign in / Sign up

Export Citation Format

Share Document