delay variations
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 11985
Author(s):  
Rahul Nandkumar Gore ◽  
Elena Lisova ◽  
Johan Åkerberg ◽  
Mats Björkman

Recent advances in the industrial internet of things (IIoT) and cyber–physical systems drive Industry 4.0 and have led to remote monitoring and control applications that require factories to be connected to remote sites over wide area networks (WAN). The adequate performance of remote applications depends on the use of a clock synchronization scheme. Packet delay variations adversely impact the clock synchronization performance. This impact is significant in WAN as it comprises wired and wireless segments belonging to public and private networks, and such heterogeneity results in inconsistent delays. Highly accurate, hardware–based time synchronization solutions, global positioning system (GPS), and precision time protocol (PTP) are not preferred in WAN due to cost, environmental effects, hardware failure modes, and reliability issues. As a software–based network time protocol (NTP) overcomes these challenges but lacks accuracy, the authors propose a software–based clock synchronization method, called CoSiWiNeT, based on the random sample consensus (RANSAC) algorithm that uses an iterative technique to estimate a correct offset from observed noisy data. To evaluate the algorithm’s performance, measurements captured in a WAN deployed within two cities were used in the simulation. The results show that the performance of the new algorithm matches well with NTP and state–of–the–art methods in good network conditions; however, it outperforms them in degrading network scenarios.


2021 ◽  
Vol 4 ◽  
pp. 1-4
Author(s):  
Andreas Keler ◽  
Lisa Kessler ◽  
Fabian Fehn ◽  
Klaus Bogenberger

Abstract. In addition to and parallel to the SERVUS project, the requirements for a new, agile, urban cargo bicycle with electric drive are identified through a targeted, scientific application potential analysis in the project "E-Cargo Bike - Accompanying Research" described here. These findings are then implemented in the SERVUS project in an agile development and production process. Several prototypes are built in the process. The new e-cargo bicycles should be able to be used both privately and commercially. They will be presented to users for the first time at events (IAA 2021) and rated by them. In addition, the longer-term allocation of the bikes to selected users enables a cross-comparison with existing e-cargo bicycle models. Finally, the substitution potential of journeys in motorized individual transport is estimated and projected using the example of Munich. A key for gathering further information on the abilities of specific electric cargo bike types is tracking experiments with various sensor setups of which the first attempts are presented in this research. Additionally, and by enabling a certain spatial accuracy of gathered GNSS data, we are able to match selected maneuvers of these vehicle types to selected types of the Munich transportation infrastructure. Besides trajectory shapes of maneuvers, we are able to incorporate travel time and delay variations depending on investigation areas and times of the day at selected urban locations for every inspected maneuver (at for examples differing intersection geometries with and without traffic light signals). Another aspect is the presence of bicycle infrastructure and its relation to the option of using mixed traffic modes.


GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Susanne Beer ◽  
Lambert Wanninger ◽  
Anja Heßelbarth

AbstractGNSS satellite and receiving antennas exhibit group delay variations (GDV), which affect code pseudorange measurements. Like antenna phase center variations, which affect phase measurements, they are frequency-dependent and vary with the direction of the transmitted and received signal. GNSS code observations contain the combined contributions of satellite and receiver antennas. If absolute GDV are available for the receiver antennas, absolute satellite GDV can be determined. In 2019, an extensive set of absolute receiver antenna GDV was published and, thus, it became feasible to estimate absolute satellite antenna GDV based on terrestrial observations. We used the absolute GDV of four selected receiver antenna types and observation data of globally distributed reference stations that employ these antenna types to determine absolute GDV for the GPS, GLONASS, Galileo, BeiDou, and QZSS satellite antennas. Besides BeiDou-2 satellites whose GDV are known to reach up to 1.5 m peak-to-peak, the GPS satellites show the largest GDV at frequencies L1 and L5 with up to 0.3 and 0.4 m peak-to-peak, respectively. They also show the largest satellite-to-satellite variations within a constellation. The GDV of GLONASS-M satellites reach up to 25 cm at frequency G1; Galileo satellites exhibit the largest GDV at frequency E6 with up to 20 cm; BeiDou-3 satellites show the largest GDV of around 15 cm at frequencies B1-2 and B3. Frequencies L2 of GPS IIIA, E1 of Galileo FOC, and B2a/B2b of BeiDou-3 satellites are the least affected. Their variations are below 10 cm.


Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 152
Author(s):  
Karin Kompatscher ◽  
Rick P. Kramer ◽  
Bart Ankersmit ◽  
Henk L. Schellen

The majority of cultural heritage is stored in archives, libraries and museum storage spaces. To reduce degradation risks, many archives adopt the use of archival boxes, among other means, to provide the necessary climate control and comply with strict legislation requirements regarding temperature and relative air humidity. A strict ambient indoor climate is assumed to provide adequate environmental conditions near objects. Guidelines and legislation provide requirements for ambient indoor climate parameters, but often do not consider other factors that influence the near-object environment, such as the use of archival boxes, airflow distribution and archival rack placement. This study aimed to provide more insight into the relation between the ambient indoor conditions in repositories and the hygrothermal conditions surrounding the collection. Comprehensive measurements were performed in a case study archive to collect ambient, local and near-object conditions. Both measurements and computational fluid dynamics (CFD) modeling were used to research temperature/relative humidity gradients and airflow distribution with a changing rack orientation, climate control strategy and supply as well as exhaust set-up in a repository. The following conclusions are presented: (i) supplying air from one air handling unit to multiple repositories on different floors leads to small temperature differences between them. Differences in ambient and local climates are noticed; (ii) archival boxes mute and delay variations in ambient conditions as expected—however, thermal radiation from the building envelope may have a large influence on the climate conditions in a box; (iii) adopting night reduction for energy conservation results in an increased influence of the external climate, with adequate insulation, this effect should be mitigated; and (iv) the specific locations of the supply air and extraction of air resulted in a vertical gradient of temperature and insufficient mixing of air, and adequate ventilation strategies should enhance sufficient air mixing in combination with the insulation of external walls, and gradient forming should be reduced.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiancai Jiang ◽  
Yu Jin ◽  
Yanli Ma

This paper addresses the limitations that the phases proposed in variable phase sequencing studies for stochastic traffic flow are all predetermined and that the variable phase sequencing is only suitable for low traffic volume environment. It presents a dynamic phase signal control method for unstable asymmetric traffic flow with two primary operational objectives: the realization of a dynamic phase scheme in each cycle and optimization of signal control parameters. First, an asymmetric state of traffic flow at signalized intersections is defined, rules governing the generation of the dynamic phase of each cycle based on asymmetric state are proposed, and the delay variations of intersections adopting dynamic phase schemes are modeled. Next, a signal control parameter adjustment algorithm for the dynamic phase is constructed to maximize the positive benefits of delay variation. Last, the operational performance of the proposed method is validated using data collected from an intersection in Harbin, China, by VISSIM simulation. Furthermore, it is found that a higher asymmetric coefficient leads to lower efficiency of a symmetrical release phase scheme at intersections, and the increase of average delay becomes significant when the asymmetric coefficient threshold is greater than 0.2.


2020 ◽  
Vol 644 ◽  
pp. A153
Author(s):  
J. Y. Donner ◽  
J. P. W. Verbiest ◽  
C. Tiburzi ◽  
S. Osłowski ◽  
J. Künsemöller ◽  
...  

Context. Radio pulses from pulsars are affected by plasma dispersion, which results in a frequency-dependent propagation delay. Variations in the magnitude of this effect lead to an additional source of red noise in pulsar timing experiments, including pulsar timing arrays (PTAs) that aim to detect nanohertz gravitational waves. Aims. We aim to quantify the time-variable dispersion with much improved precision and characterise the spectrum of these variations. Methods. We use the pulsar timing technique to obtain highly precise dispersion measure (DM) time series. Our dataset consists of observations of 36 millisecond pulsars, which were observed for up to 7.1 yr with the LOw Frequency ARray (LOFAR) telescope at a centre frequency of ~150 MHz. Seventeen of these sources were observed with a weekly cadence, while the rest were observed at monthly cadence. Results. We achieve a median DM precision of the order of 10−5 cm−3 pc for a significant fraction of our sources. We detect significant variations of the DM in all pulsars with a median DM uncertainty of less than 2 × 10−4 cm−3 pc. The noise contribution to pulsar timing experiments at higher frequencies is calculated to be at a level of 0.1–10 μs at 1.4 GHz over a timespan of a few years, which is in many cases larger than the typical timing precision of 1 μs or better that PTAs aim for. We found no evidence for a dependence of DM on radio frequency for any of the sources in our sample. Conclusions. The DM time series we obtained using LOFAR could in principle be used to correct higher-frequency data for the variations of the dispersive delay. However, there is currently the practical restriction that pulsars tend to provide either highly precise times of arrival (ToAs) at 1.4 GHz or a high DM precision at low frequencies, but not both, due to spectral properties. Combining the higher-frequency ToAs with those from LOFAR to measure the infinite-frequency ToA and DM would improve the result.


2020 ◽  
Vol 12 (6) ◽  
pp. 995
Author(s):  
Martin Håkansson

Recent publications have shown that group delay variations are present in the code observables of the BeiDou system, as well as to a lesser degree in the code observables of the global positioning system (GPS). These variations could potentially affect precise point positioning, integer ambiguity resolution by the Hatch–Melbourne–Wübbena linear combination, and total electron content estimation for ionosphere modeling from global navigation satellite system (GNSS) observations. The latter is an important characteristic of the ionosphere and a prerequisite in some applications of precise positioning. By analyzing the residuals from total electron content estimation, the existence of group delay variations was confirmed by a method independent of the methods previously used. It also provides knowledge of the effects of group delay variations on ionosphere modeling. These biases were confirmed both for two-dimensional ionosphere modeling by the thin shell model, as well as for three-dimensional ionosphere modeling using tomographic inversion. BeiDou group delay variations were prominent and consistent in the residuals for both the two-dimensional and three-dimensional case of ionosphere modeling, while GPS group delay variations were smaller and could not be confirmed due to the accuracy limitations of the ionospheric models. Group delay variations were, to a larger extent, absorbed by the ionospheric model when three-dimensional ionospheric tomography was performed in comparison with two-dimensional modeling.


GPS Solutions ◽  
2019 ◽  
Vol 24 (1) ◽  
Author(s):  
Susanne Beer ◽  
Lambert Wanninger ◽  
Anja Heßelbarth
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document