scholarly journals Improving wind farm power output through deactivating selected wind turbines

2019 ◽  
Vol 187 ◽  
pp. 407-422 ◽  
Author(s):  
Francisco Haces-Fernandez ◽  
Hua Li ◽  
David Ramirez
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4291
Author(s):  
Paxis Marques João Roque ◽  
Shyama Pada Chowdhury ◽  
Zhongjie Huan

District of Namaacha in Maputo Province of Mozambique presents a high wind potential, with an average wind speed of around 7.5 m/s and huge open fields that are favourable to the installation of wind farms. However, in order to make better use of the wind potential, it is necessary to evaluate the operating conditions of the turbines and guide the independent power producers (IPPs) on how to efficiently use wind power. The investigation of the wind farm operating conditions is justified by the fact that the implementation of wind power systems is quite expensive, and therefore, it is imperative to find alternatives to reduce power losses and improve energy production. Taking into account the power needs in Mozambique, this project applied hybrid optimisation of multiple energy resources (HOMER) to size the capacity of the wind farm and the number of turbines that guarantee an adequate supply of power. Moreover, considering the topographic conditions of the site and the operational parameters of the turbines, the system advisor model (SAM) was applied to evaluate the performance of the Vestas V82-1.65 horizontal axis turbines and the system’s power output as a result of the wake effect. For any wind farm, it is evident that wind turbines’ wake effects significantly reduce the performance of wind farms. The paper seeks to design and examine the proper layout for practical placements of wind generators. Firstly, a survey on the Namaacha’s electricity demand was carried out in order to obtain the district’s daily load profile required to size the wind farm’s capacity. Secondly, with the previous knowledge that the operation of wind farms is affected by wake losses, different wake effect models applied by SAM were examined and the Eddy–Viscosity model was selected to perform the analysis. Three distinct layouts result from SAM optimisation, and the best one is recommended for wind turbines installation for maximising wind to energy generation. Although it is understood that the wake effect occurs on any wind farm, it is observed that wake losses can be minimised through the proper design of the wind generators’ placement layout. Therefore, any wind farm project should, from its layout, examine the optimal wind farm arrangement, which will depend on the wind speed, wind direction, turbine hub height, and other topographical characteristics of the area. In that context, considering the topographic and climate features of Mozambique, the study brings novelty in the way wind farms should be placed in the district and wake losses minimised. The study is based on a real assumption that the project can be implemented in the district, and thus, considering the wind farm’s capacity, the district’s energy needs could be met. The optimal transversal and longitudinal distances between turbines recommended are 8Do and 10Do, respectively, arranged according to layout 1, with wake losses of about 1.7%, land utilisation of about 6.46 Km2, and power output estimated at 71.844 GWh per year.


2021 ◽  
Vol 6 (4) ◽  
pp. 997-1014
Author(s):  
Janna Kristina Seifert ◽  
Martin Kraft ◽  
Martin Kühn ◽  
Laura J. Lukassen

Abstract. Space–time correlations of power output fluctuations of wind turbine pairs provide information on the flow conditions within a wind farm and the interactions of wind turbines. Such information can play an essential role in controlling wind turbines and short-term load or power forecasting. However, the challenges of analysing correlations of power output fluctuations in a wind farm are the highly varying flow conditions. Here, we present an approach to investigate space–time correlations of power output fluctuations of streamwise-aligned wind turbine pairs based on high-resolution supervisory control and data acquisition (SCADA) data. The proposed approach overcomes the challenge of spatially variable and temporally variable flow conditions within the wind farm. We analyse the influences of the different statistics of the power output of wind turbines on the correlations of power output fluctuations based on 8 months of measurements from an offshore wind farm with 80 wind turbines. First, we assess the effect of the wind direction on the correlations of power output fluctuations of wind turbine pairs. We show that the correlations are highest for the streamwise-aligned wind turbine pairs and decrease when the mean wind direction changes its angle to be more perpendicular to the pair. Further, we show that the correlations for streamwise-aligned wind turbine pairs depend on the location of the wind turbines within the wind farm and on their inflow conditions (free stream or wake). Our primary result is that the standard deviations of the power output fluctuations and the normalised power difference of the wind turbines in a pair can characterise the correlations of power output fluctuations of streamwise-aligned wind turbine pairs. Further, we show that clustering can be used to identify different correlation curves. For this, we employ the data-driven k-means clustering algorithm to cluster the standard deviations of the power output fluctuations of the wind turbines and the normalised power difference of the wind turbines in a pair. Thereby, wind turbine pairs with similar power output fluctuation correlations are clustered independently from their location. With this, we account for the highly variable flow conditions inside a wind farm, which unpredictably influence the correlations.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 8 ◽  
Author(s):  
Davide Astolfi

Pitch angle control is the most common means of adjusting the torque of wind turbines. The verification of its correct function and the optimization of its control are therefore very important for improving the efficiency of wind kinetic energy conversion. On these grounds, this work is devoted to studying the impact of pitch misalignment on wind turbine power production. A test case wind farm sited onshore, featuring five multi-megawatt wind turbines, was studied. On one wind turbine on the farm, a maximum pitch imbalance between the blades of 4.5 ° was detected; therefore, there was an intervention for recalibration. Operational data were available for assessing production improvement after the intervention. Due to the non-stationary conditions to which wind turbines are subjected, this is generally a non-trivial problem. In this work, a general method was formulated for studying this kind of problem: it is based on the study, before and after the upgrade, of the residuals between the measured power output and a reliable model of the power output itself. A careful formulation of the model is therefore crucial: in this work, an automatic feature selection algorithm based on stepwise multivariate regression was adopted, and it allows identification of the most meaningful input variables for a multivariate linear model whose target is the power of the wind turbine whose pitch has been recalibrated. This method can be useful, in general, for the study of wind turbine power upgrades, which have been recently spreading in the wind energy industry, and for the monitoring of wind turbine performances. For the test case of interest, the power of the recalibrated wind turbine is modeled as a linear function of the active and reactive power of the nearby wind turbines, and it is estimated that, after the intervention, the pitch recalibration provided a 5.5% improvement in the power production below rated power. Wind turbine practitioners, in general, should pay considerable attention to the pitch imbalance, because it increases loads and affects the residue lifetime; in particular, the results of this study indicate that severe pitch misalignment can heavily impact power production.


2020 ◽  
Vol 8 (8) ◽  
pp. 576 ◽  
Author(s):  
Mario López ◽  
Noel Rodríguez ◽  
Gregorio Iglesias

To mitigate the effects of wind variability on power output, hybrid systems that combine offshore wind with other renewables are a promising option. In this work we explore the potential of combining offshore wind and solar power through a case study in Asturias (Spain)—a region where floating solutions are the only option for marine renewables due to the lack of shallow water areas, which renders bottom-fixed wind turbines inviable. Offshore wind and solar power resources and production are assessed based on high-resolution data and the technical specifications of commercial wind turbines and solar photovoltaic (PV) panels. Relative to a typical offshore wind farm, a combined offshore wind–solar farm is found to increase the capacity and the energy production per unit surface area by factors of ten and seven, respectively. In this manner, the utilization of the marine space is optimized. Moreover, the power output is significantly smoother. To quantify this benefit, a novel Power Smoothing (PS) index is introduced in this work. The PS index achieved by combining floating offshore wind and solar PV is found to be of up to 63%. Beyond the interest of hybrid systems in the case study, the advantages of combining floating wind and solar PV are extensible to other regions where marine renewable energies are being considered.


2018 ◽  
Vol 8 (12) ◽  
pp. 2660 ◽  
Author(s):  
Longyan Wang ◽  
Yunkai Zhou ◽  
Jian Xu

Optimal design of wind turbine placement in a wind farm is one of the most effective tools to reduce wake power losses by alleviating the wake effect in the wind farm. In comparison to the discrete grid-based wind farm design method, the continuous coordinate method has the property of continuously varying the placement of wind turbines, and hence, is far more capable of obtaining the global optimum solutions. In this paper, the coordinate method was applied to optimize the layout of a real offshore wind farm for both simplified and realistic wind conditions. A new analytical wake model (Jensen-Gaussian model) taking into account the wake velocity variation in the radial direction was employed for the optimization study. The means of handling the irregular real wind farm boundary were proposed to guarantee that the optimized wind turbine positions are feasible within the wind farm boundary, and the discretization method was applied for the evaluation of wind farm power output under Weibull distribution. By investigating the wind farm layout optimization under different wind conditions, it showed that the total wind farm power output increased linearly with an increasing number of wind turbines. Under some particular wind conditions (e.g., constant wind speed and wind direction, and Weibull distribution), almost the same power losses were obtained under the wake effect of some adjacent wind turbine numbers. A common feature of the wind turbine placements regardless of the wind conditions was that they were distributed along the wind farm boundary as much as possible in order to alleviate the wake effect.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1805 ◽  
Author(s):  
Mohsen Vahidzadeh ◽  
Corey D. Markfort

Power curves are used to model power generation of wind turbines, which in turn is used for wind energy assessment and forecasting total wind farm power output of operating wind farms. Power curves are based on ideal uniform inflow conditions, however, as wind turbines are installed in regions of heterogeneous and complex terrain, the effect of non-ideal operating conditions resulting in variability of the inflow must be considered. We propose an approach to include turbulence, yaw error, air density, wind veer and shear in the prediction of turbine power by using high resolution wind measurements. In this study, two modified power curves using standard ten-minute wind speed and high resolution one-second data along with a derived power surface were tested and compared to the standard operating curve for a 2.5 MW horizontal axis wind turbine. Data from supervisory control and data acquisition (SCADA) system along with wind speed measurements from a nacelle-mounted sonic anemometer and wind speed measurements from a nearby meteorological tower are used in the models. The results show that all of the proposed models perform better than the standard power curve while the power surface results in the most accurate power prediction.


2018 ◽  
Vol 8 (12) ◽  
pp. 2639 ◽  
Author(s):  
Davide Astolfi ◽  
Francesco Castellani ◽  
Francesco Berno ◽  
Ludovico Terzi

Megawatt-scale wind turbine technology is nowadays mature and, therefore, several technical improvements in order to optimize the efficiency of wind power conversion have been recently spreading in the industry. Due to the nonstationary conditions to which wind turbines are subjected because of the stochastic nature of the source, the quantification of the impact of wind turbine power curve upgrades is a complex task and in general, it has been observed that the efficiency of the upgrades can vary considerably depending on the wind flow conditions at the microscale level. In this work, a test case of wind turbine control system improvement was studied numerically and through operational data. The wind turbine is multi-megawatt; it is part of a wind farm sited in a complex terrain in Italy, featuring 17 wind turbines. The analyzed control upgrade is an optimization of the revolutions per minute (rpm) management. The impact of this upgrade was quantified through a method based on operational data: It consists of the study, before and after the upgrade, of the residuals between the measured power output of the wind turbine of interest and an appropriate model of the power output itself. The input variables for the model were selected to be some operational parameters of the nearby wind turbines: They were selected from the data set at disposal with a stepwise regression algorithm. This work also includes a numerical characterization of the problem, by means of aeroelastic simulations performed with the FAST software: By mimicking the pre- and post-upgrade generator rpm–generator torque curve, it is subsequently possible to estimate how the wind turbine power curve changes. The main result of this work is that the two estimates of production improvement have the same order of magnitude (1.0% of the production below rated power). In general, this study sheds light on the perspective of employing not only operational data, but also a sort of digital replica of the wind turbine of interest, in order to reliably quantify the impact of control system upgrades.


2020 ◽  
Author(s):  
Janna K. Seifert ◽  
Martin Kraft ◽  
Martin Kühn ◽  
Laura J. Lukassen

Abstract. The correlation of power output fluctuations of wind turbines in free field are investigated, taking into account the challenge of varying correlation states due to variable flow and wind turbine conditions within the wind farm. Based on eight months of 1 Hz SCADA data, measured at an offshore wind farm with 80 wind turbines, the influence of different parameters on the correlation of power output fluctuations is analysed. It is found that the correlation of power output fluctuations of wind turbines depends on the location of the wind turbines within the wind farm as well as the inflow conditions (free-stream or wake). Wind direction investigations show that the correlation is highest for streamwise aligned pairs and decreases towards spanwise pairs. Most importantly, the highly variable measurement data in a free-field wind farm has considerable influence on the identification of different correlation states. To account for that, the clustering algorithm k-means is used to group wind turbine pairs with similar correlations. The main outcome is that next to the location of a wind turbine pair in the wind farm the standard deviation in their power output and their power differences are suitable parameters to describe the correlation of power output fluctuations.


Sign in / Sign up

Export Citation Format

Share Document