A novel method for parameter identification and performance estimation of PV module under varying operating conditions

2021 ◽  
Vol 247 ◽  
pp. 114689
Author(s):  
Peng Hao ◽  
Yunpeng Zhang ◽  
Hao Lu ◽  
Zhe Lang
2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


2019 ◽  
Vol 16 (3) ◽  
pp. 276-289
Author(s):  
N. V. Savenkov ◽  
V. V. Ponyakin ◽  
S. A. Chekulaev ◽  
V. V. Butenko

Introduction. At present, stands with running drums are widely used for various types of tests. Power stands play a special role. Such stands take the mechanical power from the driving wheels of the car. This simulates the process of movement of the vehicle under operating conditions. Such equipment has various designs, principles of operation and performance. It is also used in tests that are different by purpose, development stages and types: research, control, certification, etc. Therefore, it is necessary in order to determine the traction-speed, fuel-efficient and environmental performance characteristics.Materials and methods. The paper provides the overview of the power stands with running drums, which are widespread on the domestic market. The authors carried out the analysis of the main structural solutions: schemes of force transfer between the wheel and the drum; types of loading devices; transmission layout schemes and features of the control and measuring complex. The authors also considered corresponding advantages and disadvantages, recommended spheres of application, demonstrated parameters and characteristics of the units’ workflow, presented components and equipment.Discussion and conclusions. The authors critically evaluate existing models of stands with running drums. Such information is useful for choosing serial models of stands and for developing technical tasks for designing or upgrading the equipment.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Author(s):  
Donald L. Simon ◽  
Sanjay Garg

A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multivariable iterative search routine that seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared with the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy.


Author(s):  
Enzo Giacomelli ◽  
Massimo Schiavone ◽  
Fabio Manfrone ◽  
Andrea Raggi

Poppet valves have been used for a long time for very high pressure reciprocating compressors, as for example in the case of Low Density Polyethylene. These applications are very critical because the final pressure can reach 350 MPa and the evaluation of the performance of the machines is strongly connected to the proper operation and performance of the valve itself. The arrangement of cylinders requires generally a certain compactness of valve to withstand high fatigue stresses, but at the same time pressure drop and operating life are very important. In recent years the reliability of the machines has been improving over and over and the customers’ needs are very stringent. Therefore the use of poppet valves has been extended to other cases. In general the mentioned applications are heavy duty services and the simulation of the valves require some coefficients to be used in the differential equations, able to describe the movement of plate/disk or poppet and the flow and related pressure drop through the valves. Such coefficients are often determined in an experimental way in order to have a simulation closer to the real operating conditions. For the flow coefficients it is also possible today to use theoretical programs capable of determining the needed values in a quick and economical way. Some investigations have been carried out to determine the values for certain geometries of poppet valves. The results of the theory have been compared with some experimental tests. The good agreement between the various methods indicates the most suitable procedure to be applied in order to have reliable data. The advantage is evident as the time necessary for the theoretical procedure is faster and less expensive. This is of significant importance at the time of the design and also in case of a need to provide timely technical support for the operating behavior of the valves. Particularly for LDPE, the optimization of all the parameters is strongly necessary. The fatigue stresses of cylinder heads and valve bodies have to match in fact with gas passage turbulence and pressure drop, added to the mechanical behavior of the poppet valve components.


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


2016 ◽  
Vol 168 ◽  
pp. 1020-1023 ◽  
Author(s):  
Sahar Habibiabad ◽  
Yeşim Serinağaoğlu Doğrusöz ◽  
Mustafa İlker Beyaz

2013 ◽  
Vol 22 (08) ◽  
pp. 1350067 ◽  
Author(s):  
SEYYED AMIR ASGHARI ◽  
ATENA ABDI ◽  
OKYAY KAYNAK ◽  
HASSAN TAHERI ◽  
HOSSEIN PEDRAM

Electronic equipment used in harsh environments such as space has to cope with many threats. One major threat is the intensive radiation which gives rise to Single Event Upsets (SEU) that lead to control flow errors and data errors. In the design of embedded systems to be used in space, the use of radiation tolerant equipment may therefore be a necessity. However, even if the higher cost of such a choice is not a problem, the efficiency of such equipment is lower than the COTS equipment. Therefore, the use of COTS with appropriate measures to handle the threats may be the optimal solution, in which a simultaneous optimization is carried out for power, performance, reliability and cost. In this paper, a novel method is presented for control flow error detection in multitask environments with less memory and performance overheads as compared to other methods seen in the literature.


Sign in / Sign up

Export Citation Format

Share Document