Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm

2008 ◽  
Vol 30 (5) ◽  
pp. 2623-2635 ◽  
Author(s):  
Lean Yu ◽  
Shouyang Wang ◽  
Kin Keung Lai
Author(s):  
Ling Tang ◽  
Wei Dai ◽  
Lean Yu ◽  
Shouyang Wang

To enhance the prediction accuracy for crude oil price, a novel ensemble learning paradigm coupling complementary ensemble empirical mode decomposition (CEEMD) and extended extreme learning machine (EELM) is proposed. This novel method is actually an improved model under the effective "decomposition and ensemble" framework, especially for nonlinear, complex, and irregular data. In this proposed method, CEEMD, a current extension from the competitive decomposition family of empirical mode decomposition (EMD), is first applied to divide the original data (i.e., difficult task) into a number of components (i.e., relatively easy subtasks). Then, EELM, a recently developed, powerful, fast and stable intelligent learning technique, is implemented to predict all extracted components individually. Finally, these predicted results are aggregated into an ensemble result as the final prediction using simple addition ensemble method. With the crude oil spot prices of WTI and Brent as sample data, the empirical results demonstrate that the novel CEEMD-based EELM ensemble model statistically outperforms all listed benchmarks (including typical forecasting techniques and similar ensemble models with other decomposition and ensemble tools) in prediction accuracy. The results also indicate that the novel model can be used as a promising forecasting tool for complicated time series data with high volatility and irregularity.


2021 ◽  
pp. 321-326
Author(s):  
Sivaprakash J. ◽  
Manu K. S.

In the advanced global economy, crude oil is a commodity that plays a major role in every economy. As Crude oil is highly traded commodity it is essential for the investors, analysts, economists to forecast the future spot price of the crude oil appropriately. In the last year the crude oil faced a historic fall during the pandemic and reached all time low, but will this situation last? There was analysis such as fundamental analysis, technical analysis and time series analyses which were carried out for predicting the movement of the oil prices but the accuracy in such prediction is still a question. Thus, it is necessary to identify better methods to forecast the crude oil prices. This study is an empirical study to forecast crude oil prices using the neural networks. This study consists of 13 input variables with one target variable. The data are divided in the ratio 70:30. The 70% data is used for training the network and 30% is used for testing. The feed forward and back propagation algorithm are used to predict the crude oil price. The neural network proved to be efficient in forecasting in the modern era. A simple neural network performs better than the time series models. The study found that back propagation algorithm performs better while predicting the crude oil price. Hence, ANN can be used by the investors, forecasters and for future researchers.


Author(s):  
Lean Yu ◽  
Shouyang Wang

In this study, a multistage confidence-based radial basis function (RBF) neural network ensemble learning model is proposed to design a reliable delinquent prediction system for credit risk management. In the first stage, a bagging sampling approach is used to generate different training datasets. In the second stage, the RBF neural network models are trained using various training datasets from the previous stage. In the third stage, the trained RBF neural network models are applied to the testing dataset and some prediction results and confidence values can be obtained. In the fourth stage, the confidence values are scaled into a unit interval by logistic transformation. In the final stage, the multiple different RBF neural network models are fused to obtain the final prediction results by means of confidence measure. For illustration purpose, two publicly available credit datasets are used to verify the effectiveness of the proposed confidence-based RBF neural network ensemble learning paradigm.


Sign in / Sign up

Export Citation Format

Share Document