Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature

Energy ◽  
2007 ◽  
Vol 32 (12) ◽  
pp. 2385-2395 ◽  
Author(s):  
Shuang-Ying Wu ◽  
You-Rong Li ◽  
Yan Chen ◽  
Lan Xiao
2005 ◽  
Author(s):  
Shuang-Ying Wu ◽  
Yan Chen ◽  
You-Rong Li ◽  
Dan-Ling Zeng

Based on the first and second thermodynamic laws, a new systematic approach to study in detail the exergy transfer processes of forced convective heat transfer through a duct with constant wall temperature for fully developed turbulent flow is introduced. Some definition formula of the local and mean convective exergy transfer coefficient, convective exergy resistance, exergy flux and exergy-transfer Nusselt number etc have been provided and their new generalized expressions are derived. By reference to smooth duct, the numerical results of exergy transfer are obtained, the effect of Reynolds number and different cross-sectional position in the duct on exergy transfer process is analyzed. In addition, a comparison of the results of exergy transfer with that of energy transfer is also discussed.


Author(s):  
S. Kabelac ◽  
K. B. Anoop

Nanofluids are colloidal suspensions with nano-sized particles (<100nm) dispersed in a base fluid. From literature it is seen that these fluids exhibit better heat transfer characteristics. In our present work, thermal conductivity and the forced convective heat transfer coefficient of an alumina-water nanofluid is investigated. Thermal conductivity is measured by a steady state method using a Guarded Hot Plate apparatus customized for liquids. Forced convective heat transfer characteristics are evaluated with help of a test loop under constant heat flux condition. Controlled experiments under turbulent flow regime are carried out using two particle concentrations (0.5vol% and 1vol %). Experimental results show that, thermal conductivity of nanofluids increases with concentration, but the heat transfer coefficient in the turbulent regime does not exhibit any remarkable increase above measurement uncertainty.


1986 ◽  
Vol 108 (1) ◽  
pp. 33-39 ◽  
Author(s):  
M. A. Ebadian ◽  
H. C. Topakoglu ◽  
O. A. Arnas

The convective heat transfer problem along the portion of a tube of elliptic cross section maintained under a constant wall temperature where hydrodynamically and thermally fully developed flow conditions prevail is solved in this paper. The successive approximation method is used for the solution utilizing elliptic coordinates. Analytical expressions for temperature distribution and Nusselt number corresponding to the first cycle of approximation are obtained in terms of the ellipticity of the cross section. In the case of a circular section, the first cycle approximation of the Nusselt number is obtained as 3.7288 compared to the exact value of 3.6568. Representative temperature distribution curves are plotted and compared to those corresponding with constant wall heat flux conditions.


Author(s):  
Alaba Bamido ◽  
V. K. Dhir ◽  
V. Prasad ◽  
Debjyoti Banerjee

Abstract Analytical and computational studies were performed to compare the convective heat transfer characteristics of a supercritical fluid in a circular pipe for horizontal flow configuration. The motivation of this study was to explore the efficacy of heat exchangers involving forced convective heat transfer of supercritical fluids (tube side) integrated with air cooling (i.e., in free convection). The goal of this study was to determine the forced convective heat transfer characteristics of supercritical carbon dioxide (sCO2) in air-cooled tube heat-exchangers. The scope of this study was limited to the values of Reynolds number (Re) varying from 10∼104 (i.e., involving both laminar and turbulent flow correlations for analytical formulations and computational models). The predictions for the forced convection heat transfer characteristics (e.g., heat transfer coefficient, pressure drop, volume flow rate, mass flow rate, pump penalty/ pumping power/ required compressor ratings, Nusselt number (Nu) etc.) were obtained using analytical formulations and compared with that of computational models. The flow configurations involved a horizontal circular pipe of 1 m length and with different diameters (ranging from 1 mm – 10 mm). The supercritical properties of the working fluid were investigated at a fixed value of reduced pressure (Pr = 1.1) and a fixed range of temperatures, i.e., T, varying from 550 to 750 [K]. The fluid properties were gleaned from the NIST property database (available online at the NIST website). For the second part of this study, the forced convective heat transfer characteristics of sCO2 flowing in a horizontal tube with circular cross-section were studied using analytical correlations (e.g., Dittus-Boelter and Gnielinski correlation) and validated using commercial tools for Computational Fluid Dynamics (CFD)/ Computational Heat Transfer (CHT), i.e., using Fluent® (Ansys®). Validation of the analytical predictions using CFD/ CHT tools was performed to ascertain the level of uncertainty in the predicted results due to acute variation of the thermo-physical properties as a function of temperature and pressure (since the thermo-physical properties are expected to oscillate widely in the vicinity of the critical point). In the simulations, the inlet temperature for the supercritical fluid (sCO2) was fixed (at Tin = 700 [K]), and the ambient temperature was also fixed (at Tamb = 300 [K]), for the purpose of determining the values of the natural convection coefficients (external to the tube). Constant values of the thermo-physical properties of sCO2 at the mean film temperature (and corresponding to the inlet pressure values) were assumed for obtaining the analytical predictions. The results from the CFD / CHT simulations helped to quantify the level of uncertainties in the assumption of constant properties (in the analytical model) at different values of Reynolds number (i.e., for both laminar and turbulent flow regimes).


Author(s):  
Jiwon Yu ◽  
Seok-won Kang ◽  
Saeil Jeon ◽  
Debjyoti Banerjee

Forced convective heat transfer experiments were performed for internal flow of de-ionized water (DIW) and aqueous nanofluids (ANF) in microchannels that were integrated with a calorimeter apparatus and an array of temperature nanosensors. The heat flux and wall temperature distribution was measured for the different test fluids as a function of fluid inlet temperature, wall temperature, heat flux, nanoparticles concentration, nanoparticle materials (composition, nanoparticle size and shape) and flow rates. Anomalous behavior of the nanofluids in convective heat transfer was observed where the heat flux varied as a function of flow rate and bulk temperature. The heat exchanging surfaces were characterized using electron microscopy (SEM, TEM) to monitor the change in surface characteristics both before and after the experiments. Precipitation of nanoparticles on the walls of the microchannels can lead to the formation of “nano-fins” at low concentrations of the nanoparticles while more rampant precipitation at high concentration of the nanoparticles in the nanofluids can lead to scaling (fouling) of the microchannel surfaces leading to degradation of convective heat transfer — compared to that of pure water under the same experimental conditions. Also, competing effects resulting from the decrease in the specific heat capacity as well as anomalous enhancement in the thermal conductivity of aqueous nanofluids can lead to counter-intuitive behavior of these test liquids during forced convective heat transfer.


Sign in / Sign up

Export Citation Format

Share Document