A unified correlation for estimating specific chemical exergy of solid and liquid fuels

Energy ◽  
2012 ◽  
Vol 40 (1) ◽  
pp. 164-173 ◽  
Author(s):  
Guohui Song ◽  
Jun Xiao ◽  
Hao Zhao ◽  
Laihong Shen
2011 ◽  
Vol 50 (16) ◽  
pp. 9758-9766 ◽  
Author(s):  
Guohui Song ◽  
Laihong Shen ◽  
Jun Xiao

2016 ◽  
Vol 4 (3) ◽  
pp. 217-231 ◽  
Author(s):  
Francis Chinweuba Eboh ◽  
Peter Ahlström ◽  
Tobias Richards

2021 ◽  
Vol 235 ◽  
pp. 116462
Author(s):  
Suzimara Reis Silva ◽  
Gabriel Bonanato ◽  
Esly Ferreira da Costa Jr ◽  
Boutros Sarrouh ◽  
Andréa Oliveira Souza da Costa

Author(s):  
John Larkin ◽  
Nelson Macken ◽  
Mark Schaffer ◽  
Yaseen Elkasabi ◽  
Charles A. Mullen ◽  
...  

The guayule (Parthenium argentatum) plant is a source of natural rubber and a possible high-energy biofuel. Herein guayule bagasse, the residual biomass after latex extraction, which accounts for 90% of the processed plant material, is modeled in a fast pyrolysis biorefining process. The simulation uses PRO/II® software and is based on data and processes used successfully in a bench scale facility. The unique 200-ton per day plant includes fast pyrolysis utilizing the tail gas reactive process followed by atmospheric separation, hydrodeoxygenation and final product separation, resulting in products similar to traditional fuels, i.e., gasoline, jet fuel and diesel. Approximately 10% of the biomass is converted to liquid fuels with 10% of this converted to gasoline, 34% jet fuel and 56 % diesel. These yields are compared to alternative feedstock and methods. The simulation results are utilized in an exergetic assessment. The depletion of exergy from its natural state (cumulative exergy demand, CExD) is considered as a measure of sustainability of the refining process. Breeding factors, measures of exergy production (the ratio of chemical exergy of the output products to the process exergy inputs), are determined. Results show, for the entire biorefining process, favorable breeding factors can possibly exceed 10, thus suggesting a favorable method of exergy production.


Author(s):  
V.A. Munoz ◽  
R.J. Mikula ◽  
C. Payette ◽  
W.W. Lam

The transformation of high molecular weight components present in heavy oils into useable liquid fuels requires their decomposition by means of a variety of processes. The low molecular weight species produced recombine under controlled conditions to generate synthetic fuels. However, an important fraction undergo further recombination into higher molecular weight components, leading to the formation of coke. The optical texture of the coke can be related to its originating components. Those with high sulfur and oxygen content tend to produce cokes with small optical texture or fine mosaic, whereas compounds with relatively high hydrogen content are likely to produce large optical texture or domains. In addition, the structure of the parent chemical components, planar or nonplanar, determines the isotropic or anisotropic character of the coke. Planar molecules have a tendency to align in an approximately parallel arrangement to initiate the formation of the nematic mesophase leading to the formation of anisotropic coke. Nonplanar highly alkylated compounds and/or those rich in polar groups form isotropic coke. The aliphatic branches produce steric hindrance to alignment, whereas the polar groups participate in cross-linking reactions.


2003 ◽  
Vol 773 ◽  
Author(s):  
Mo Yang ◽  
Shalini Prasad ◽  
Xuan Zhang ◽  
Mihrimah Ozkan ◽  
Cengiz S. Ozkan

AbstractExtracellular potential is an important parameter which indicates the electrical activity of live cells. Membrane excitability in osteoblasts plays a key role in modulating the electrical activity in the presence of chemical agents. The complexity of cell signal makes interpretation of the cellular response to a chemical agent very difficult. By analyzing shifts in the signal power spectrum, it is possible to determine a frequency spectrum also known as Signature Pattern Vectors (SPV) specific to a chemical. It is also essential to characterize single cell sensitivity and response time for specific chemical agents for developing detect-to-warn biosensors. We used a 4x4 multiple Pt microelectrode array to spatially position single osteoblast cells, by using a gradient AC field. Fast Fourier Transformation (FFT) and Wavelet Transformation (WT) analyses were used to extract information pertaining to the frequency of firing from the extracellular potential.


2020 ◽  
Author(s):  
Michele Larocca

<p>Protein folding is strictly related to the determination of the backbone dihedral angles and depends on the information contained in the amino acid sequence as well as on the hydrophobic effect. To date, the type of information embedded in the amino acid sequence has not yet been revealed. The present study deals with these problematics and aims to furnish a possible explanation of the information contained in the amino acid sequence, showing and reporting rules to calculate the backbone dihedral angles φ. The study is based on the development of mechanical forces once specific chemical interactions are established among the side chain of the residues in a polypeptide chain. It aims to furnish a theoretical approach to predict backbone dihedral angles which, in the future, may be applied to computational developments focused on the prediction of polypeptide structures.</p>


2018 ◽  
Author(s):  
Todd D. Gruber ◽  
Chithra Krishnamurthy ◽  
Jonathan B. Grimm ◽  
Michael R. Tadross ◽  
Laura M. Wysocki ◽  
...  

<p>The utility of<b> </b>small molecules to probe or perturb biological systems is limited by the lack of cell-specificity. ‘Masking’ the activity of small molecules using a general chemical modification and ‘unmasking’ it only within target cells could overcome this limitation. To this end, we have developed a selective enzyme–substrate pair consisting of engineered variants of <i>E. coli</i> nitroreductase (NTR) and a 2‑nitro-<i>N</i>-methylimidazolyl (NM) masking group. To discover and optimize this NTR–NM system, we synthesized a series of fluorogenic substrates containing different nitroaromatic masking groups, confirmed their stability in cells, and identified the best substrate for NTR. We then engineered the enzyme for improved activity in mammalian cells, ultimately yielding an enzyme variant (enhanced NTR, or eNTR) that possesses up to 100-fold increased activity over wild-type NTR. These improved NTR enzymes combined with the optimal NM masking group enable rapid, selective unmasking of dyes, indicators, and drugs to genetically defined populations of cells.</p>


Sign in / Sign up

Export Citation Format

Share Document