Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty

Energy ◽  
2016 ◽  
Vol 109 ◽  
pp. 920-932 ◽  
Author(s):  
Ling Ji ◽  
Guo-He Huang ◽  
Lu-Cheng Huang ◽  
Yu-Lei Xie ◽  
Dong-Xiao Niu
2021 ◽  
Vol 9 ◽  
Author(s):  
Johanna Olovsson ◽  
Maria Taljegard ◽  
Michael Von Bonin ◽  
Norman Gerhardt ◽  
Filip Johnsson

This study analyses the impacts of electrification of the transport sector, involving both static charging and electric road systems (ERS), on the Swedish and German electricity systems. The impact on the electricity system of large-scale ERS is investigated by comparing the results from two model packages: 1) a modeling package that consists of an electricity system investment model (ELIN) and electricity system dispatch model (EPOD); and 2) an energy system investment and dispatch model (SCOPE). The same set of scenarios are run for both model packages and the results for ERS are compared. The modeling results show that the additional electricity load arising from large-scale implementation of ERS is mainly, depending on model and scenario, met by investments in wind power in Sweden (40–100%) and in both wind (20–75%) and solar power (40–100%) in Germany. This study also concludes that ERS increase the peak power demand (i.e., the net load) in the electricity system. Therefore, when using ERS, there is a need for additional investments in peak power units and storage technologies to meet this new load. A smart integration of other electricity loads than ERS, such as optimization of static charging at the home location of passenger cars, can facilitate efficient use of renewable electricity also with an electricity system including ERS. A comparison between the results from the different models shows that assumptions and methodological choices dictate which types of investments are made (e.g., wind, solar and thermal power plants) to cover the additional demand for electricity arising from the use of ERS. Nonetheless, both modeling packages yield increases in investments in solar power (Germany) and in wind power (Sweden) in all the scenarios, to cover the new electricity demand for ERS.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2597 ◽  
Author(s):  
Maria Taljegard ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
Filip Johnsson

This study considers whether electric vehicles (EVs) can be exploited as a flexibility management strategy to stimulate investments in and operation of renewable electricity under stringent CO2 constraints in four regions with different conditions for renewable electricity (Sweden, Germany, the UK, and Spain). The study applies a cost-minimisation investment model and an electricity dispatch model of the European electricity system, assuming three types of charging strategies for EVs. The results show that vehicle-to-grid (V2G), i.e., the possibility to discharging the EV batteries back to grid, facilitates an increase in investments and generation from solar photovoltaics (PVs) compare to the scenario without EVs, in all regions except Sweden. Without the possibility to store electricity in EV batteries across different days, which is a technical limitation of this type of model, EVs increase the share of wind power by only a few percentage points in Sweden, even if Sweden is a region with good conditions for wind power. Full electrification of the road transport sector, including also dynamic power transfer for trucks and buses, would decrease the need for investments in peak power in all four regions by at least 50%, as compared to a scenario without EVs or with uncontrolled charging of EVs, provided that an optimal charging strategy and V2G are implemented for the passenger vehicles.


2020 ◽  
Vol 76 (3) ◽  
pp. 6-15
Author(s):  
Giedrius Gecevičius ◽  
Mantas Marčiukaitis

Analysis of wind power utilization efficiency around the world and Europe has revealed the gap between feasible and factual power generation. The paper presents an investigation of wind power generation dynamics, penetration levels into the electricity system, and dependence of capacity factors on the hub height and the rotor diameter of wind turbines in the Baltic States. These factors are the main for the evaluation of wind power utilization efficiency. Wind power penetration levels show that possibilities of the energy system to accept more wind power installations in the Baltic States are far away from its limit. Besides, dependence of high wind turbines capacity factors’ on the hub height and the rotor diameter in the range of 20–120 m was revealed.


Sign in / Sign up

Export Citation Format

Share Document