A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation

Energy ◽  
2017 ◽  
Vol 138 ◽  
pp. 816-830 ◽  
Author(s):  
Dongran Song ◽  
Jian Yang ◽  
Mei Su ◽  
Anfeng Liu ◽  
Zili Cai ◽  
...  
2004 ◽  
Vol 126 (4) ◽  
pp. 1083-1091 ◽  
Author(s):  
Alan D. Wright ◽  
Mark J. Balas

The wind industry seeks to design wind turbines to maximize energy production and increase fatigue life. To achieve this goal, we must design wind turbines to extract maximum energy and reduce component and system loads. This paper applies modern state-space control design methods to a two-bladed teetering-hub upwind machine located at the National Wind Technology Center. The design objective is to regulate turbine speed in region 3 (above rated wind speed) and enhance damping in several low-damped flexible modes of the turbine. The controls approach is based on the Disturbance Accommodating Control method and provides accountability for wind-speed disturbances. First, controls are designed with the single control input rotor collective pitch to stabilize the first drive-train torsion as well as the tower first fore-aft bending modes. Generator torque is then incorporated as an additional control input. This reduces some of the demand placed on the rotor collective pitch control system and enhances first drive train torsion mode damping. Individual blade pitch control is then used to attenuate wind disturbances having spatial variation over the rotor and effectively reduces blade flap deflections caused by wind shear.


1994 ◽  
Vol 116 (3) ◽  
pp. 153-157
Author(s):  
G. McNerney

The U.S. Windpower 56-100 is a three-bladed, free yaw wind turbine, using full span blade pitch control for power regulation. It is theoretically possible to increase the energy capture of the 56-100 by adjusting the blade angle to the optimum pitch angle on a continuing basis at below rated speeds. This concept was field tested on the 56-100, but it was found that the optimum pitch control logic opens a pathway for the 56-100 to fall into stall operation when the winds are above the rated wind speed. The 56-100 then operates as a stall-regulated wind turbine with an overall reduction of energy capture and an increase in system loads.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Roberto Salinas Mejia

The aim of designing wind turbine blades is to improve the power capture ability. Since rotor control technology is currently limited to controlling rotational speed and blade pitch, an increasing concern has been given to morphing blades. In this paper, a simplified morphing blade is introduced, which has a linear twist distribution along the span and a shape that can be controlled by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades, a numerical code based on the blade element momentum theory is developed and validated. The blade of the NREL Phase VI wind turbine is taken as a reference blade and has a fixed pitch. The optimization problems associated with the control of the morphing blade and a blade with pitch control are formulated. The optimal results show that the morphing blade gives better results than the blade with pitch control in terms of produced power. Under the assumption that at a given site, the annual average wind speed is known and the wind speed follows a Rayleigh distribution, the annual energy production of wind turbines was evaluated for three types of blade, namely, morphing blade, blade with pitch control and fixed pitch blade. For an annual average wind speed varying between 5 m/s and 15 m/s, it turns out that the annual energy production of the wind turbine containing morphing blades is 24.5% to 69.7% higher than the annual energy production of the wind turbine containing pitch fixed blades. Likewise, the annual energy production of the wind turbine containing blades with pitch control is 22.7% to 66.9% higher than the annual energy production of the wind turbine containing pitch fixed blades.


2012 ◽  
Vol 522 ◽  
pp. 364-368
Author(s):  
Ji Zhe Hai ◽  
Wen Lei Sun ◽  
Guo Yu Hu ◽  
An Wu

In this paper, we demonstrate the design and simulation of a baseline PID rotor collective pitch controller with a gain scheduling for WindPACT) operation. We use a FAST-Simulink model of the closed-loop system to describe simulating this controller.Through the simulation analysis and comparing the result, control effect with the control strategy of gain scheduling results in better power regulation. At the moment of wind speed make more close to the rated wind speed, the changes of pitch angle is more sensitive, and the output power is larger and more smoothly.


2011 ◽  
Vol 347-353 ◽  
pp. 2323-2329
Author(s):  
Zhi Chao Lan ◽  
Lin Tao Hu ◽  
Yin Xue ◽  
De Liang Zen

An increasing number of large wind turbines with a variable-speed variable pitch control mechanism are developed to improve the response speed of wind turbines and get maximum active power .Designing a reasonable pitch control system requires both a good control scheme and a more accurate wind turbine model. Base on the analysis of wind turbines’ principle, a local linearization model of wind turbine is built by using linearization method of small deviation in this paper. The model’s inputs are the data of wind speed and pitch angle, and the output is the active power. The accuracy of the model is verified by studying the active power output of wind turbine under different circumstances in which the pitch angle changes with a constant wind speed and the wind speed changes with a constant pitch angle. At the same time, this paper provides pitch control program based on internal model control after analyzing the disadvantages of PID pitch controller. When the wind speed is beyond the rating, the active power can be limited reasonably around the power rating of wind turbines by adjusting the pitch angle.


Sign in / Sign up

Export Citation Format

Share Document