The Modeling and Simulation of Wind Turbines and the Design of Pitch Control System

2011 ◽  
Vol 347-353 ◽  
pp. 2323-2329
Author(s):  
Zhi Chao Lan ◽  
Lin Tao Hu ◽  
Yin Xue ◽  
De Liang Zen

An increasing number of large wind turbines with a variable-speed variable pitch control mechanism are developed to improve the response speed of wind turbines and get maximum active power .Designing a reasonable pitch control system requires both a good control scheme and a more accurate wind turbine model. Base on the analysis of wind turbines’ principle, a local linearization model of wind turbine is built by using linearization method of small deviation in this paper. The model’s inputs are the data of wind speed and pitch angle, and the output is the active power. The accuracy of the model is verified by studying the active power output of wind turbine under different circumstances in which the pitch angle changes with a constant wind speed and the wind speed changes with a constant pitch angle. At the same time, this paper provides pitch control program based on internal model control after analyzing the disadvantages of PID pitch controller. When the wind speed is beyond the rating, the active power can be limited reasonably around the power rating of wind turbines by adjusting the pitch angle.

2011 ◽  
Vol 383-390 ◽  
pp. 2501-2506
Author(s):  
Li Na Liu ◽  
Hui Juan Qi ◽  
Bin Li

The parameters of large wind turbine need to be adjusted timely to avoid excessive wind energy that will cause damage on the wind turbine itself. Based on the simplified mathematical model of wind turbine, we got the relationship curve between its parameters. When the speed of wind was higher than the rated wind speed, we figure out the value of pitch angle during the changes of effective wind speed to keep rated output power. Neural Network used to train the data and pitch control system was built, it used to adjust pitch angle once the wind changes, and maintain the output power at rated value. The complex mathematical relation can be replaced by the trained network model. Detailed simulation results have confirmed the feasibility and performance of the optimal control strategy, which protect the wind turbine from damage and prolong its service life.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2031
Author(s):  
Jongmin Cheon ◽  
Jinwook Kim ◽  
Joohoon Lee ◽  
Kichang Lee ◽  
Youngkiu Choi

This paper deals with the development of a wind turbine pitch control system and the construction of a Hardware-in-the-Loop-Simulation (HILS) testbed for the performance test of the pitch control system. When the wind speed exceeds the rated wind speed, the wind turbine pitch controller adjusts the blade pitch angles collectively to ensure that the rotor speed maintains the rated rotor speed. The pitch controller with the individual pitch control function can add individual pitch angles into the collective pitch angles to reduce the mechanical load applied to the blade periodically due to wind shear. Large wind turbines often experience mechanical loads caused by wind shear phenomena. To verify the performance of the pitch control system before applying it to an actual wind turbine, the pitch control system is tested on the HILS testbed, which acts like an actual wind turbine system. The testbed for evaluating the developed pitch control system consists of the pitch control system, a real-time unit for simulating the wind and the operations of the wind turbine, an operational computer with a human–machine interface, a load system for simulating the actual wind load applied to each blade, and a real pitch bearing. Through the several tests based on HILS test bed, how well the pitch controller performed the given roles for each area in the entire wind speed area from cut-in to cut-out wind speed can be shown.


1994 ◽  
Vol 116 (3) ◽  
pp. 153-157
Author(s):  
G. McNerney

The U.S. Windpower 56-100 is a three-bladed, free yaw wind turbine, using full span blade pitch control for power regulation. It is theoretically possible to increase the energy capture of the 56-100 by adjusting the blade angle to the optimum pitch angle on a continuing basis at below rated speeds. This concept was field tested on the 56-100, but it was found that the optimum pitch control logic opens a pathway for the 56-100 to fall into stall operation when the winds are above the rated wind speed. The 56-100 then operates as a stall-regulated wind turbine with an overall reduction of energy capture and an increase in system loads.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Roberto Salinas Mejia

The aim of designing wind turbine blades is to improve the power capture ability. Since rotor control technology is currently limited to controlling rotational speed and blade pitch, an increasing concern has been given to morphing blades. In this paper, a simplified morphing blade is introduced, which has a linear twist distribution along the span and a shape that can be controlled by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades, a numerical code based on the blade element momentum theory is developed and validated. The blade of the NREL Phase VI wind turbine is taken as a reference blade and has a fixed pitch. The optimization problems associated with the control of the morphing blade and a blade with pitch control are formulated. The optimal results show that the morphing blade gives better results than the blade with pitch control in terms of produced power. Under the assumption that at a given site, the annual average wind speed is known and the wind speed follows a Rayleigh distribution, the annual energy production of wind turbines was evaluated for three types of blade, namely, morphing blade, blade with pitch control and fixed pitch blade. For an annual average wind speed varying between 5 m/s and 15 m/s, it turns out that the annual energy production of the wind turbine containing morphing blades is 24.5% to 69.7% higher than the annual energy production of the wind turbine containing pitch fixed blades. Likewise, the annual energy production of the wind turbine containing blades with pitch control is 22.7% to 66.9% higher than the annual energy production of the wind turbine containing pitch fixed blades.


Author(s):  
Issam Minka ◽  
Ahmed Essadki ◽  
Sara Mensou ◽  
Tamou Nasser

<span lang="EN-US">In this paper, we study the primary frequency control that allows the variable speed Aeolian to participate in the frequency regulation when a failure affects the network frequency. This method based on the control of the generator rotational speed or the control of pitch angle makes it possible to force the wind turbine to produce less power than its maximum available power, consequently we will create an active power reserve. This wind turbine must inject into the grid a part of its power reserve when the frequency drops, in contrary the wind turbine reserves more of energy. So, this work presents the performances of this control strategy for the different wind speed value. The results are obtained by a simulation in the MATLAB/SIMULINK environment.</span>


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Ghada Adel Aziz

Abstract       The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of  the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineering and renewable energy concepts.      A comparison was done to access the functionality of  the developed power control system of fuzzy logic and classical control system with PID – control. It can be concluded that the power control system of fuzzy logic allows to accurately maintain production under the control target function for each work area. When switching operation of wind turbines, it has the distinction that from 13.5 m/s  to another wind velocity value, there is no overshoot  and a typical of classical control systems, and when the wind velocity V is less than13.5 m / s, the pitch angle of the blades should be slightly greater than zero, and if it has increased by 5 °, then blade length should be minimal as possible. Simulation program proved the possibility of effective power regulation for the large wind turbines controller fuzzy type on the basis of knowledge production "if - then" rules, which were shown to be effective on these wind turbines control.  Keywords: Mamdani and Larsen algorithms fuzzy inference, Matlab Fuzzy Logic ,Fuzzy-PID controllers, Wind turbine.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Hikaru Matsumiya ◽  
Ryosuke Ito ◽  
Masafumi Kawakami ◽  
Daisuke Matsushita ◽  
Makoto Iida ◽  
...  

A 1-kW small horizontal-axis wind turbine “Airdolphin,” capable of high wind operation up to 50 m/s without pitch control system, is now under global round robin tests. The present paper reports a series of technical approach including design/analysis, track tests, and field tests conducted in support to the design process. One windy site “Erimo” and one offshore site “Fukushima” were chosen. For example, at “Erimo,” a record of one-day generation was 8.831 kWh on November 13, 2006 (day-averaged wind speed; 11.8 m/s) with 36.8% of capacity factor. An operation data under an attack of typhoon with 50 m/s maximum wind speed demonstrated the technical concepts of high wind operation and safety. A new term “capatureability” as an indicator of WT performance was proposed.


2013 ◽  
Vol 569-570 ◽  
pp. 668-675 ◽  
Author(s):  
P.D. Chougule ◽  
S.R.K. Nielsen ◽  
Biswajit Basu

As Development of smallvertical axis wind turbines (VAWT) for urban use is becoming an interestingtopic both within industry and academia. However, there are few new designs ofvertical axis turbines which are customized for building integration. These aregetting importance because they operate at low rotational speed producing veryless noise during operation, although these are less efficient than HorizontalAxis Wind Turbines (HAWT). The efficiency of a VAWT has been significantlyimproved by H-Darrieus VAWT design based on double airfoil technology asdemonstrated by the authors in a previous publication. Further, it is well knowthat the variation of the blade pitch angle during the rotation improves thepower efficiency. A blade pitch variation is implemented by active blade pitchcontrol, which operates as per wind speed and position of the blade withrespect to the rotor. A double multiple stream tube method is used to determinethe performance of the H-Darrieus VAWT. The power coefficient is compared withthat of a fixed pitch and a variable pitch double airfoil blade VAWT. It isdemonstrated that an improvement in power coefficient by 20% is achieved andthe turbine could start at low wind speed


Author(s):  
Ahsanullah Memon ◽  
Mohd Wazir Mustafa ◽  
Attaullah Khidrani ◽  
Farrukh Hafeez ◽  
Shadi Khan Baloach ◽  
...  

Brushless double fed induction generator (BDFIG) based machines have gained popularity in wind turbine applications because of their easily accessible design. Low voltage ride through (LVRT) is critical for the reliable integration of renewable energy with the power grid. The refore, LVRT capability of brushless DFIGs makes them an attractive choice for maintaining voltage stability in grid. The existing works on BDFIG control suffer from two major drawbacks. Firstly, the methodology does not consider LVRT as a design metric, and secondly, these techniques do not have any means for coordinating between a machine side inverter (MSI) and grid side inverter (GSI). This results in sub-optimal controller design and eventually result in the violation of grid code requirements. To solve these issues, this paper proposes the use of brushless DFIGs in wind turbines using a control technique based on analytical modeling. Moreover, employing internal model control (IMC), the proposed technique can effectively coordinate the control between the MSI and GSI resulting in reduced oscillations, overshoots and improved stability under fault conditions. Furthermore, the simulation results for wind turbine generators show that the proposed scheme significantly improves the stability and compliance of grid codes ascompared to the existing hardware techniques.


Sign in / Sign up

Export Citation Format

Share Document