The investigation of thermo-economic performance and conceptual design for the miniaturized lead-cooled fast reactor composing supercritical CO2 power cycle

Energy ◽  
2019 ◽  
Vol 173 ◽  
pp. 174-195 ◽  
Author(s):  
Ming-Jia Li ◽  
Jin-Liang Xu ◽  
Feng Cao ◽  
Jia-Qi Guo ◽  
Zi-Xiang Tong ◽  
...  
Author(s):  
Hassan Abdul-Sater ◽  
James Lenertz ◽  
Chris Bonilha ◽  
Xijia Lu ◽  
Jeremy Fetvedt

The Allam Cycle is an oxy-fuel supercritical CO2 power cycle that generates low-cost electricity from fossil fuels while producing near-zero air emissions. The turbine exhaust (sCO2) is then available for partial injection into underground storage while remainder is reused in the power cycle. Novel combustors required by this and other sCO2 cycles are critical to their commercialization. A conceptual design was developed for a coal syngas-fueled oxy-fuel combustor that meets the conditions of the Allam Cycle. The design of this combustor utilizes a 300MWe coal syngas-fired Allam Cycle thermodynamic analyses and ASPEN process models as inputs to the combustor. The primary inputs for design of the combustor included the fuel mixture compositions and respective flow rates for the constituent gases, pressures, and operating temperatures which were scaled to a 5MWth test article. The combustor was sized to accommodate the required pressures, heat release rate, flow rates, and residence times to produce well mixed turbine inlet flows with complete combustion. A preliminary design for a 5MWth test scale combustor was then developed, and a numerical study using Computational Fluid Dynamics (CFD) simulations was carried out to demonstrate the feasibility of that combustor. Steady-state RANS simulations were used to qualitatively examine the preliminary design of the 5MWth combustor and predict the fluid mechanics, heat transfer, and combustion. The purpose of the analysis was to verify the following criteria: 1) good mixing of the fuel and oxidizer in the primary zone, 2) uniform exhaust gas temperature and 3) efficient combustion with complete CO burnout. Additionally, the analysis investigated wall temperature and the impact of varying the fuel composition on combustion performance. The CFD model results were in good agreement with the equilibrium one-dimensional (1D) Aspen model results. The CFD predictions of the current conceptual design verified the identified key criteria for the combustor and demonstrated its feasibility.


2021 ◽  
Vol 198 ◽  
pp. 117515
Author(s):  
Chendi Yang ◽  
Yuanyuan Deng ◽  
Ning Zhang ◽  
Xiaopeng Zhang ◽  
Gaohong He ◽  
...  

2007 ◽  
Vol 39 (3) ◽  
pp. 193-206 ◽  
Author(s):  
Do-Hee Hahn ◽  
Yeong-Il Kim ◽  
Chan-Bock Lee ◽  
Seong-O Kim ◽  
Jae-Han Lee ◽  
...  

2021 ◽  
Vol 8 (2) ◽  
pp. 1-9
Author(s):  
Hoai Nam Tran ◽  
Yasuyoshi Kato ◽  
Van Khanh Hoang ◽  
Sy Minh Tuan Hoang

This paper presents the neutronics characteristics of a prototype gas-cooled (supercritical CO2-cooled) fast reactor (GCFR) with minor actinide (MA) loading in the fuel. The GCFR core is designed with a thermal output of 600 MWt as a part of a direct supercritical CO2 (S-CO2) gas turbine cycle. Transmutation of MAs in the GCFR has been investigated for attaining low burnup reactivity swing and reducing long-life radioactive waste. Minor actinides are loaded uniformly in the fuel regions of the core. The burnup reactivity swing is minimized to 0.11% ∆k/kk’ over the cycle length of 10 years when the MA content is 6.0 wt%. The low burnup reactivity swing enables minimization of control rod operation during burnup. The MA transmutation rate is 42.2 kg/yr, which is equivalent to the production rates in 7 LWRs of the same electrical output.


Author(s):  
T. Conboy ◽  
J. Pasch ◽  
D. Fleming

The US Department of Energy is currently focused on the development of next-generation nuclear power reactors, with an eye towards improved efficiency and reduced capital cost. To this end, reactors using a closed-Brayton power conversion cycle have been proposed as an attractive alternative to steam turbines. The supercritical-CO2 recompression cycle has been identified as a leading candidate for this application as it can achieve high efficiency at relatively low operating temperatures with extremely compact turbomachinery. Sandia National Laboratories has been a leader in hardware and component development for the supercritical-CO2 cycle. With contractor Barber-Nichols Inc, Sandia has constructed a megawatt-class S-CO2 cycle test-loop to investigate the key areas of technological uncertainty for this power cycle, and to confirm model estimates of advantageous thermodynamic performance. Until recently, much of the work has centered on the simple S-CO2 cycle — a recuperated Brayton loop with a single turbine and compressor. However work has recently progressed to a recompression cycle with split-shaft turbo-alternator-compressors, unlocking the potential for much greater efficiency power conversion, but introducing greater complexity in control operations. The following sections use testing experience to frame control actions made by test loop operators in bringing the recompression cycle from cold startup conditions through transition to power generation on both turbines, to the desired test conditions, and finally to a safe shutdown. During this process, considerations regarding turbocompressor thrust state, CO2 thermodynamic state at the compressor inlet, compressor surge and stall, turbine u/c ratio, and numerous other factors must be taken into account. The development of these procedures on the Sandia test facility has greatly reduced the risk to industry in commercial development of the S-CO2 power cycle.


2018 ◽  
Vol 108 ◽  
pp. 111-121 ◽  
Author(s):  
Zhangpeng Guo ◽  
Yang Zhao ◽  
Yaoxuan Zhu ◽  
Fenglei Niu ◽  
Daogang Lu

Sign in / Sign up

Export Citation Format

Share Document